首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous neuropharmacological studies have described the presence of a nitric oxide-cGMP signalling pathway in the crayfish abdominal nervous system. In this study we have analysed the distribution of putative nitric oxide synthase (NOS)-containing ascending interneurones in the crayfish terminal abdominal ganglion using NADPH-diaphorase (NADPHd) histochemistry. Ascending intersegmental interneurones were stained intracellularly using the fluorescent dye Lucifer yellow and the ganglia containing the stained interneurones subsequently processed for NADPHd activity. Fluorescence persisted throughout histochemical processing. These double-labelling experiments showed that 12 of 18 identified ascending interneurones were NADPHd positive. Thus many ascending interneurones that process mechanosensory signals in the terminal ganglion may contain NOS, and are themselves likely sources of NO which is known to modulate their synaptic inputs. Three clear relationships emerged from our analysis between the effects of NO on the synaptic inputs of interneurones, their output properties and their staining for NADPH-diaphorase. First were class 1 interneurones with no local outputs in the terminal ganglion, the NE type interneurones, which had sensory inputs that were enhanced by NO and were NADPHd positive. Second were class 1 interneurones with local and intersegmental output effects that had sensory inputs that were also enhanced by NO but were NADPHd negative. Third were class 2 interneurones with local and intersegmental outputs that had synaptic inputs that were depressed by the action of NO but were NADPHd positive. These results suggest that NO could selectively enhance specific synaptic connections and sensory processing pathways in local circuits.  相似文献   

2.
Nitric oxide (NO) acts as a signalling molecule by activating soluble guanylate cyclase and causing accumulation of the second messenger cyclic guanosine 3',5'-monophosphate (cGMP) in target cells. In order to detect the presence of NO-cGMP signalling pathway in the crayfish abdominal nervous system, accumulation of NO-induced cGMP was investigated by anti-cGMP immunochemistry. Some preparations were incubated in a high-K(+) saline containing an inhibitor of cGMP-degrading phosphodiesterase, 3-isobutyl-1-methyxanthine (IBMX), to activate NO generating neurones, which could release NO in the ganglion, and then immunohistochemistry using an anti-cGMP antibody was performed. The other preparations were incubated in NO donor, sodium nitroprusside (SNP) saline containing IBMX before anti-cGMP immunohistochemistry was performed. The distribution of cGMP-like immunoreactive neurones in high-K(+) treated preparations was similar to that of cGMP-like immunoreactive neurones in NO donor treated preparations. About 70-80 cell bodies and many neuronal branches in the neuropilar area of the ganglion were stained, although no neurones showed immunoreactivity unless preparations were activated by either high-K(+) or the NO donor. Some of them were identical neurones, and they were intersegmental ascending interneurones and motor neurones. Sensory afferents that innervates hind gut showed strong cGMP-like immunoreactivity, although no mechanosensory afferents showed any immunoreactivity. These results strongly suggest the presence of an NO-cGMP signalling pathway that regulates neuronal events in the abdominal nervous system of the crayfish.  相似文献   

3.
The neural pathways underlying the processing of signals from locust (Schistocerca gregaria) ovipositor hairs by different classes of interneurones are investigated.Spikes in the sensory neurones from these hairs evoke chemically-mediated, unitary EPSPs with a short and constant latency in six identified non-giant projection interneurones with cell bodies in the terminal abdominal ganglion. Five of these interneurones receive direct inputs from the valves ipsilateral to their neuropilar branches, whereas the other receives direct inputs from valves on both sides. The sensory neurone from a single hair makes divergent connections with several interneurones and those from different hairs make convergent connections with a given interneurone. The amplitude of the EPSPs evoked depends on the position of a hair along the proximal-distal axis of the valve, with sensory neurones from more distal hairs generating larger amplitude EPSPs.Deflection of hairs also excites three of the four giant projection interneurones through polysynaptic pathways and some local interneurones in the terminal abdominal ganglion through monosynaptic connections. Branches of non-giant projection interneurones, local interneurones, but not those of the giant interneurones, overlap the axon terminals of the ovipositor hair afferents in the terminal abdominal ganglion.  相似文献   

4.
Giant interneurones mediate a characteristic `tail flip' escape response of the crayfish, Procambarus clarkii, which move it rapidly away from the source of stimulation. We have analysed the synaptic connections of proprioceptive sensory neurones with one type of giant interneurone, the lateral giant. Spikes in sensory neurones innervating an exopodite-endopodite chordotonal organ in the tailfan, which monitors the position and movements of the exopodite, are followed at a short and constant latency by excitatory postsynaptic potentials in a lateral giant interneurone (LG) recorded in the terminal abdominal ganglion. These potentials are unaffected by manipulation of the membrane potential of LG, by bath application of saline with a low calcium concentration, or by one containing the nicotinic antagonist, curare. The potentials evoked in LG by chordotonal organ stimulation are thus thought to be monosynaptic and electrically mediated. This is the first demonstration that LG receives input from sensory receptors other than exteroceptors in the terminal abdominal ganglion. Accepted: 7 April 1997  相似文献   

5.
The central projections of sensory neurones innervating a strand chordotonal organ (CO) in the tailfan of the crayfish, Procambarus clarkii (Girard) have been investigated. The CO monitors movement of the exopodite of the tailfan relative to the endopodite. Intracellular recording and staining were used to characterise the response of the sensory neurones to applied stretches of the chordotonal organ and to reveal their morphology. Two gross morphological types of afferents were found: those that terminated in the terminal (6th) abdominal ganglion on the side ipsilateral to the sensory receptor, and those that had branches in the terminal ganglion and an intersegmental axon that ascended rostrally. Afferents responded to position, velocity and direction of imposed CO displacement. Afferents with particular physiological properties had similar morphologies in different crayfish. Irrespective of their directional responses, afferents had central projection areas dependent upon their velocity thresholds. Many afferents responded only during movement of the CO, and those with the lowest velocity thresholds (2°/s) had branches that projected most anteriorly, while those with progressively higher velocity thresholds (up to 200°/s) projected progressively more posteriorly. Afferents that responded to low velocity ramp movements and spiked tonically projected to more posterior areas of the ganglion than those that responded only to movements.Abbreviations A6SCI sixth abdominal sensory commissure I - CO chordotonal organ - DMT dorsal medial tract - G6 sixth abdominal ganglion - LDT lateral dorsal tract - MDT medial dorsal tract - MVT medial ventral tract - R1–4 nerve roots 1–4 - VLT ventral lateral tract - VMT ventral medial tract  相似文献   

6.
We have analyzed the synthesis of nitric oxide in the terminal abdominal ganglion of the crayfish using the fluorescent probe 4,5-Diaminofluoroscein diacetate, DAF-2 DA. Following DAF-2 loading, ganglia showed cell-specific patterns of fluorescence in which the occurrence of strongly fluorescent cell bodies was highest in specific anterior, central, and posterior regions. We found that preincubation with the nitric oxide synthase (NOS) inhibitor L-NAME prevented much of the initial development of DAF-2 fluorescence, whereas the inactive isomer D-NAME had no effect. Washout of preincubated L-NAME caused increased cell-specific fluorescence due to endogenous NOS activity. Application of the NOS substrate L-arginine also resulted in an increase of DAF-2 fluorescence in a cell-specific manner. We bath applied the NO donor SNAP to increase exogenous NO levels which resulted in DAF-2 fluorescence increases in most cells. We therefore presume that the cell-specific pattern of DAF-2 fluorescence indicates the distribution of neurones actively synthesizing NO. The similarity between the DAF-2 staining pattern and previously published studies of NOS activity are discussed.  相似文献   

7.
We have analyzed the synthesis of nitric oxide in the terminal abdominal ganglion of the crayfish using the fluorescent probe 4,5‐Diaminofluoroscein diacetate, DAF‐2 DA. Following DAF‐2 loading, ganglia showed cell‐specific patterns of fluorescence in which the occurrence of strongly fluorescent cell bodies was highest in specific anterior, central, and posterior regions. We found that preincubation with the nitric oxide synthase (NOS) inhibitor L ‐NAME prevented much of the initial development of DAF‐2 fluorescence, whereas the inactive isomer D ‐NAME had no effect. Washout of preincubated L ‐NAME caused increased cell‐specific fluorescence due to endogenous NOS activity. Application of the NOS substrate L ‐arginine also resulted in an increase of DAF‐2 fluorescence in a cell‐specific manner. We bath applied the NO donor SNAP to increase exogenous NO levels which resulted in DAF‐2 fluorescence increases in most cells. We therefore presume that the cell‐specific pattern of DAF‐2 fluorescence indicates the distribution of neurones actively synthesizing NO. The similarity between the DAF‐2 staining pattern and previously published studies of NOS activity are discussed. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 361–369, 2002  相似文献   

8.
Summary We studied the neuroanatomy of the terminal (sixth abdominal) ganglion in the crayfish Procambarus clarkii with silver-impregnated sections and nickel fills. We describe the fiber tracts, commissures and neuropilar areas, and give the topological relationships of motoneurons and intersegmental interneurons with reference to their neuropilar landmark structures.All five anterior abdominal ganglia have an almost identical number of 600–700 neurons with a similar pattern of distribution. Each contains a single neuromere with a common plan of neuropil organization. In contrast, the terminal ganglion consists of two neuromeres which appear to be derived from the intrinsic sixth abdominal and telson ganglion. The basic organization of each neuromere parallels that of the third abdominal ganglion in the appearance and arrangement of fiber tracts and commissures, although some modifications occur. The fusion of two neuromeres is represented by the duplication of segmentally homologous neurons, MoGs and LGs, whose topological relationships to the neuropil structures are similar to those of the anterior ganglion.We also discuss the origin of the telson and its ganglion (the seventh abdominal neuromere), and dispute the classical theory that the telson derives from a postsegmental region.  相似文献   

9.
Summary The central projections of primary afferents in the terminal ganglion of the crayfish can be seen when an axonal filling with nickel chloride with subsequent silver intensification was used for identification. We describe here the topological relationships of the projections to the landmark structures of the neuropil.The terminal ganglion has five pairs of sensory nerves associated with the mechanosensory hairs and internal proprioceptors. The projection fields of the primary sensory neurons in the nerves Rl and R2 are almost entirely restricted to the ipsilateral half of the ganglion, whereas those of the nerves R3, R4 and R5 cross the midline to form three sensory commissures, A6SCI, A7SCI and A7SCII. The projection fields are segregated from each other, although all are restricted to the ventral neuropil which lies under the ventral intermediate tract (VIT). The intersegmental projections that ascend via the connective ipsilateral to their origins could be observed. This pattern of projection correlates well with the receptive fields exhibited by several mechanosensory interneurons on the body surface of the final segment.  相似文献   

10.
The hermit crab, Pagurus pollicarus, has the same organization in its fourth abdominal ganglion as its macruran relatives in spite of the reduction in abdominal muscles, sensory receptors, and appendages. Connective axons are grouped into discrete bundles between which five groups of commissural fibers run to connect left and right sides. The neurites of ventral cell bodies run dorsally in characteristic groups between the connective bundles. The hermit crab fourth ganglion has two thirds as many cells as the crayfish and is laterally compressed. This reduction appears related to the reduction in the sizes of the ganglionic roots. The ventral fine fibered neuropil is larger on the left than the right side reflecting the loss of pleopods on the right side. The basic organization of decapod abdominal ganglia appears to permit considerable integrative flexibility within a relatively conservative morphological framework.  相似文献   

11.
1. Nitric oxide (NO) is highly reactive gaseous molecule to which many physiological and pathological functions have been attributed in the central (CNS) and peripheral (PNS) nervous system. The present investigation was undertaken to map the distribution pattern of the enzyme responsible for the synthesis of NO, nitric oxide synthase (NOS), and especially its neuronal isoform (nNOS) in the population of primary afferent neurons of the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN) of the rabbit.2. In order to identify neuronal structures expressing nNOS we applied histochemistry to its specific histochemical marker nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd).3. We found noticeable amount of NADPHd-exhibiting primary afferent neurons in TG of the rabbit under physiological conditions. The intensity of the histochemical reaction was highly variable reaching the maximum in the subpopulation of small-to-medium-sized neurons. The large-sized neurons were only weakly stained or actually did not posses any NADPHd-activity. In addition, NADPHd-positive nerve fibers were detected between clusters of the ganglionic cells and in the peripheral branches of the trigeminal nerve (TN). NADPHd-exhibiting MTN neurons were noticed in the whole rostrocaudal extent of the nucleus even though some differences were found concerning the ratio of NADPHd-positive versus NADPHd-negative cell bodies. Similarly, we observed striking diversity in the intensity of NADPHd histochemical reaction in the subpopulations of small-, medium-, and large-sized MTN neurons.4. The predominant localization of NADPHd in the subpopulation of small-to-medium-sized TG neurons which are generally considered to be nociceptive suggests that NO probably takes part in the modulation of nociceptive inputs from the head and face. Furthermore, we tentatively assume that NADPHd-exhibiting MTN neurons probably participate in transmission and modulation of the proprioceptive impulses from muscle spindles of the masticatory muscles and mechanoreceptors of the periodontal ligaments and thus provide sensory feedback of the masticatory reflex arc.  相似文献   

12.
A polyclonal, monospecific antiserum raised against a nicotinic acetylcholine receptor protein affinity-purified from insect nervous tissue, was employed to demonstrate the localization of antigenic sites in the neuropile of the terminal (sixth) abdominal ganglion of the cockroach Periplaneta americana. In agreement with previously published autoradiographic mapping of specific [125I]alpha-bungarotoxin binding sites, specific areas of the central neuropile of this ganglion were densely stained, but not the cercal afferent axons. No staining was detected corresponding to the dense, peripheral, partly non-specific binding of alpha-bungarotoxin seen in autoradiographs of the same tissue. Certain peripherally located neuronal cell bodies, including the cell body of giant interneuron 2, contained intracellularly located antigenic sites.  相似文献   

13.
1. Brief interruption of spinal cord blood flow resulting from transient abdominal aortic occlusion may lead to degeneration of specific spinal cord neurons and to irreversible loss of neurological function. The alteration of nitric oxide/nitric oxide synthase (NO/NOS) pool occurring after ischemic insult may play a protective or destructive role in neuronal survival of affected spinal cord segments.2. In the present study, the spatiotemporal changes of NOS following transient ischemia were evaluated by investigating neuronal NOS immunoreactivity (nNOS-IR), reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry, and calcium-dependent NOS (cNOS) conversion of [3H] l-arginine to [3H] l-citrulline.3. The greatest levels of these enzymes and activities were detected in the dorsal horn, which appeared to be most resistant to ischemia. In that area, the first significant increase in NADPHd staining and cNOS catalytic activity was found immediately after a 15-min ischemic insult.4. Increases in the ventral horn were observed later (i.e., after a 24-h reperfusion period). While the most intense increase in nNOS-IR was detected in surviving motoneurons of animals with a shorter ischemic insult (13 min), the greatest increase of cNOS catalytic activity and NADPHd staining of the endothelial cells was found after stronger insult (15 min).5. Given that the highest levels of nNOS, NADPHd, and cNOS were found in the ischemia-resistant dorsal horn, and nNOS-IR in surviving motoneurons, it is possible that NO production may play a neuroprotective role in ischemic/reperfusion injury.  相似文献   

14.
The role of non-spiking local interneurones in the synaptic interactions between abdominal extension-evoking descending interneurones and uropod motor neurones in the terminal abdominal ganglion of the crayfish Procambarus clarkii (Girard) was investigated electrophysiologically. Continuous electrical stimulation of the lateral region of the 3rd-4th abdominal connective that included abdominal extension evoking interneurones excited the opener motor neurones and inhibited the closer, reductor motor neurone. Spikes from a single descending interneurone evoked consistent and short latency (0.8–0.9 ms) excitatory postsynaptic potentials (e.p.s.ps) in the opener motor neurones, and evoked rather long-latency (1.5–2.7 ms) inhibitory postsynaptic potentials (i.p.s.ps) in the reductor motor neurone. Many non-spiking interneurones also received depolarizing p.s.ps (0.8–2.5 ms in latency) that were usually faster than i.p.s.ps of the reductor motor neurone if both neurones were recorded sequentially in the same preparation. Non-spiking interneurones received convergent inputs from several descending interneurones and made inverting connection with the reductor motor neurone. Elimination of descending inputs to a particular non-spiking interneurone could reduce the inhibitory response of the reductor motor neurone. These observations strongly suggested that descending inhibitory inputs to the closer, reductor motor neurone were mediated by non-spiking interneurones. Furthermore, some non-spiking interneurones made output connections with the opener motor neurones. The disynaptic pathway through non-spiking interneurones is significant to control and modulate the opening pattern of the uropod during abdominal extension. Accepted: 27 December 1996  相似文献   

15.
Three distinct clusters of crustacean cardioactive-peptide-immunoreactive neurones occur in the terminal abdominal ganglion of the crayfish species Orconectes limosus, Astacus leptodactylus, Astacus astacus and Procambarus clarkii, as revealed by immunocytochemistry of whole-mount preparations and sections. They exhibit similar topology and projection patterns in all four studied species. An anterior ventral lateral and a posterior lateral cluster contain one small, strongly stained perikaryon and two large, less intensely stained perikarya, each showing contralateral projections. A posterior medial lateral cluster of up to six cells also contains these two types of perikarya. Whereas the small type perikarya belong to putative interneurones, the large type perikarya give rise to extensive neurohaemal plexuses in perineural sheaths of the third roots of the fifth abdominal ganglia, the connectives, the dorsal telson nerves, the ganglion itself, its roots and arteriolar supply. Thin fibres from these plexuses reach newly discovered putative neurohaemal areas around the hindgut and anus via the intestinal and the anal nerves, and directly innervate the phasic telson musculature. A comparison with earlier investigations of motoneurones and segmentation indicates that these three cell groups containing putative neurosecretory neurones may be members of at least three neuromeres in this ganglion. Crustacean cardioactive peptide released from these neurones may participate in the neurohumoral and modulatory control of different neuronal and muscle targets, thereby exceeding its previously established hindgut and heart excitatory effects.Abbreviations AG abdominal ganglion - adpl arteria dorsalis pleica - Ala arreria lateralis abdominalis - Asub arteria subneuralis - CCAP crustacean cardioactive peptide - CNS central nervous system - IR immunoreactive - LG lateral giant axon - LTr lateral tract - MDT medial dorsal tract - MG medial giant axon - M Tr medial tract - mcan musculus compressor ani - mfltp museulus flexor telsonos posterior - nan nervus ani (AG6 N5) - nant nervus anterior (AG6 N1, N2) - nia nervus intestinal anterior - nin nervus intestinalis (AG6 N7) - nip nervus intestinalis posterior - nteld nervus telsonos dorsalis (AG6 N6) - nielv nervus telsonos ventralis (AG6 N4) - nur nervus uropedalis (AG6 N3) - nven nervus ventralis (AG5 N3) - PIR peri-intestinal ring - PTF posterior telson flexor - VLT ventral lateral tract - VMT ventral medial tract - VNC ventral nerve cord - VIF ventral telson flexor - AVLC, PLC, PMLC anterior ventral lateral, posterior lateral, posterior medial lateral CCAP-immunoreactive cell cluster - A6AVC, A7AVC anterior ventral commissures - A7DCI dorsal commissure I - A7PVC posterior ventral commissure - A7SCII sensory commissure II - A7VCII, A7VCIII ventral commissures II and III of the sixth (A6) and seventh (A7) abdominal neuromer  相似文献   

16.
Immunocytochemical mapping of cholinergic neurones in the CNS of the cockroach Periplaneta americana has been attempted using monoclonal antibodies to choline acetyltransferase (ChAT, acetyl-CoA: choline O-acetyltransferase, EC 2.3.1.6). Monoclonal antibodies 11 255 and 1E6 raised against rat brain ChAT and 1C8 raised against Drosophila melanogaster ChAT were ineffective in staining Periplaneta neurones. However, the cytoplasm of certain neuronal cell bodies was stained by monoclonal antibody 4D7 prepared against rat ChAT. Staining of cell bodies by 4D7 was enhanced following in vivo pre-treatment with colchicine. The staining of specific neurones by monoclonal antibody 4D7 indicates that these cockroach cells are rich in a protein with antigenic determinants resembling those of vertebrate ChAT. For some unidentified neurones, 4D7 staining is associated with the presence of acetylcholinesterase indicating that this monoclonal antibody offers a probe for mapping cholinergic neurones in the CNS of Periplaneta americana. The fast coxal depressor motoneurone (D(f)) was not stained by monoclonal antibody 4D7. Some neuronal processes in the sixth abdominal ganglion, and sensory cell bodies in the cerci were lightly stained by monoclonal antibody 4D7 following pre-injection of animals for 36 hr with colchicine.  相似文献   

17.
We have analysed the effects of the neuromodulator nitric oxide (NO) on proprioceptive information processing by ascending intersegmental interneurons that form part of the local circuits within the terminal abdominal ganglion of the crayfish. NO modulates the synaptic inputs to ascending interneurons, enhancing the amplitude of class I interneurons and reducing the amplitude of class II interneurons. Repetitive proprioceptive stimulation leads to rapid depression in a specific set of identified interneurons but not in others. Bath application of a nitric oxide scavenger, PTIO, causes a significant decrease in the rate of depression of the interneurons showing a rapid depression, independent of interneuron class, but has no effect on the dynamic responses of the interneurons that show little initial depression. These results indicate that NO exerts multiple effects at the very first stage of synaptic integration in local circuits.  相似文献   

18.
Crickets respond to air currents with quick avoidance behavior. The terminal abdominal ganglion (TAG) has a neuronal circuit for a wind-detection system to elicit this behavior. We investigated neuronal transmission from cercal sensory afferent neurons to ascending giant interneurons (GIs). Pharmacological treatment with 500 muM acetylcholine (ACh) increased neuronal activities of ascending interneurons with cell bodies located in the TAG. The effects of ACh antagonists on the activities of identified GIs were examined. The muscarinic ACh antagonist atropine at 3-mM concentration had no obvious effect on the activities of GIs 10-3, 10-2, or 9-3. On the other hand, a 3-mM concentration of the nicotinic ACh antagonist mecamylamine decreased spike firing of these interneurons. Immunohistochemistry using a polyclonal anti-conjugated acetylcholine antibody revealed the distribution of cholinergic neurons in the TAG. The cercal sensory afferent neurons running through the cercal nerve root showed cholinergic immunoreactivity, and the cholinergic immunoreactive region in the neuropil overlapped with the terminal arborizations of the cercal sensory afferent neurons. Cell bodies in the median region of the TAG also showed cholinergic immunoreactivity. This indicates that not only sensory afferent neurons but also other neurons that have cell bodies in the TAG could use ACh as a neurotransmitter.  相似文献   

19.
Electrical stimulation of sensory neurons that innervate receptors on the tailfan of crayfish evokes a reflex response of motor neurons that produce movements of the blades of the tailfan, the uropods. We analyzed the modulatory effects of nitric oxide (NO) on the spike frequency of the reflex response. Bath application of L-arginine and SNAP, which elevate endogenous and exogenous NO levels, increased the frequency of the evoked response, whereas the application of L-NAME and PTIO, which reduce NO levels, decreased the frequency of the response. To determine through what pathway and target NO exerted these effects we bath applied ODQ, an inhibitor of soluble guanylyl cyclase (sGC), which decreased the frequency of response, and 8-br-cGMP, which increased the spike frequency of response. To provide further evidence that NO acts via sGC, we elevated NO levels with L-arginine while simultaneously inhibiting sGC with ODQ. This application reduced the response to control levels, indicating that NO in the terminal ganglion of crayfish acts via sGC to modulate cGMP levels, which in turn regulate the responses of the uropod motor neurons.  相似文献   

20.
Production of nitric oxide (NO), an evolutionarily conserved, intercellular signaling molecule, appears to be required for the maintenance of the larval state in the gastropod mollusc Ilyanassa obsoleta. Pharmacological inactivation of endogenous nitric oxide synthase (NOS), the enzyme that generates NO, can trigger metamorphosis in physiologically competent larvae of this species. Neuropils in the brains of these competent larvae display histochemical reactivity for NADPH diaphorase (NADPHd), an indication of neuronal NOS activity. The intensity of NADPHd staining is greatest in the neuropil of the apical ganglion (AG), a region of the brain that contains the apical sensory organ and that innervates the bilobed ciliated velum, the larval swimming and feeding organ. Once metamorphosis is initiated, the intensity of NADPHd staining in the AG and presumably, concomitant NO production, decline. The AG is finally lost by the end of larval metamorphosis, some 4 days after induction. To determine if the neurons of the AG are a source of larval NO, we conducted immunocytochemical studies on larval Ilyanassa with commercially available antibodies to mammalian neuronal NOS. We localized NOS-like immunoreactivity (NOS-IR) to 3 populations of cells in competent larvae: somata of the AG and putative sensory neurons in the edge of the mantle and foot. Immunocytochemistry on pre-competent larvae demonstrated that numbers of NOS-IR cells in the AG increase throughout the planktonic larval stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号