首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Arabidopsis leaves there is a bi-phasic dose-response to applied nucleotides; i.e., lower concentrations induce stomatal opening, while higher concentrations induce closure. Two mammalian purinoceptor antagonists, PPADS and RB2, block both nucleotide-induced stomatal opening and closing. These antagonists also partially block ABA-induced stomatal closure and light-induced stomatal opening. There are two closely related Arabidopsis apyrases, AtAPY1 and AtAPY2, which are both expressed in guard cells. Here we report that low levels of apyrase chemical inhibitors can induce stomatal opening in the dark, while apyrase enzyme blocks ABA-induced stomatal closure. We also demonstrate that high concentrations of ATP induce stomatal closure in the light. Application of ATPγS and chemical apyrase inhibitors at concentrations that have no effect on stomatal closure can lower the threshold for ABA-induced closure. The closure induced by ATPγS was not observed in gpa1-3 loss-of-function mutants. These results further confirm the role of extracellular ATP in regulating stomatal apertures.  相似文献   

2.
一氧化氮是脱落酸诱导杨树叶片气孔关闭的信号分子   总被引:4,自引:0,他引:4  
研究了外源NO和ABA对杨树气孔运动调节作用.结果表明,外源NO和ABA都能诱导杨树离体叶片气孔关闭,且具有剂量效应,NO可加强ABA诱导气孔关闭的作用.NO清除剂(c—PTIO)可大大减弱NO和ABA对气孔关闭的诱导作用.证实了NO参与ABA调控气孔开闭运动过程,不同浓度NO供体SNP和ABA处理杨树离体叶片,SOD活性变化不明显,POD活性受到显著抑制.杨树叶片粗酶液的体外实验表明,不同浓度SNP对POD活性的抑制呈明显的浓度及时间效应;而ABA对POD活性则几乎没有影响.本研究证明,NO调节ABA诱导的树木气孔关闭作用,是ABA诱导树木气孔关闭的一种重要信号分子.  相似文献   

3.
A comprehensive study which was undertaken on the effect of three polyamines (PAs) on stomatal closure was examined in relation to nitric oxide (NO) and reactive oxygen species (ROS) levels in guard cells of Arabidopsis thaliana. Three PAs—putrescine (Put), spermidine (Spd), and spermine (Spm)—induced stomatal closure, while increasing the levels of NO as well as ROS in guard cells. The roles of NO and ROS were confirmed by the reversal of closure by cPTIO (NO scavenger) and catalase (ROS scavenger). The presence of L-NAME (NOS-like enzyme inhibitor) reversed PA-induced stomatal closure, suggesting that NOS-like enzyme played a significant role in NO production during stomatal closure. The reversal of stomatal closure by diphenylene iodonium (DPI, NADPH oxidase inhibitor) or 2-bromoethylamine (BEA, copper amine oxidase inhibitor) or 1,12 diaminododecane (DADD, polyamine oxidase inhibitor) was partial. In contrast, the presence of DPI along with BEA/DADD reversed completely the closure by PAs. We conclude that both NO and ROS are essential signaling components during Put-, Spd-, and Spm-induced stomatal closure. The PA-induced ROS production is mediated by both NADPH oxidase and amine oxidase. The rise in ROS appears to be upstream of NO. Ours is the first detailed study on the role of NO and its dependence on ROS during stomatal closure by three major PAs.  相似文献   

4.
ROP GTPases function as molecular switches in diverse cellular processes. Previously, we showed that ROP2 GTPase is activated upon light irradiation, and thereby negatively regulates light-induced stomatal opening. Here we studied the role of ROP2 during stomatal closure. The expression of a constitutively active form of ROP2 (CA-rop2) in Arabidopsis thaliana and Vicia faba resulted in slower and reduced stomatal closure in response to abscisic acid (ABA) and CO(2) . In contrast, the expression of a dominant-negative form of ROP2 (DN-rop2) and the knockout mutation of ROP2 (rop2 KO) promoted ABA-induced stomatal closure in Arabidopsis. As early as 10 min after ABA treatment, ROP2 was inactivated and translocated to the cytoplasm of the stomatal guard cells. To elucidate the mechanism by which active ROP2 suppresses stomatal closure, we monitored endocytotic membrane trafficking, which is regulated by Rho GTPases in animal cells. We found that the endocytosis of plasma membrane (PM), as tracked by FM4-64, was lower in CA-rop2-expressing guard cells than in those of wild-type plants, which suggests that active ROP2 suppresses the endocytotic internalization of PM, a process required for stomatal closure. Together, our results suggest that ROP2 is inactivated by ABA, and that this inactivation is required for the timely stomatal closure.  相似文献   

5.
小麦和大豆叶片的气孔不均匀关闭现象   总被引:9,自引:0,他引:9  
用14CO2放射自显影的方法研究了田间小麦和大豆叶片在水分胁迫下的气孔关闭状况。正常浇水的小麦和大豆叶片呈现出对14CO2的均匀吸收。在小麦与大豆"片水势分别降至-1.75和-1.32MPa的土壤干旱条件下,两种作物叶片都发生气孔不均匀关闭。离休叶片在空气中快速脱水易引起气孔不均匀关闭。正常供水小麦叶片在晴天中午明显的光合午休时,无CO2的不均匀吸收。某些晴天中午,在大豆光合午休低谷时段观察到较明显的气孔不均匀关闭,用气体交换资料计算出的细胞间隙CO2浓度并不随气孔年度的降低而下降,反而略有回升。  相似文献   

6.
The stomatal distribution, non-uniform stomatal closure, stomatal conductance, and gas-exchange of several hybrid poplar clones under light stress were studied using scanning electron microscopy (SEM) and gas-exchange. Non-uniform stomatal closure was found under natural light stress by SEM, and there was a linear relationship between the stomatal aperture and stomatal conductance. We suggest a formula for modification of intercellular CO2 concentration, which can restore consideration of stomatal factors leading to midday depression of photosynthesis in some cases. Received: 11 January 1999 / Accepted: 6 April 2000  相似文献   

7.
The effects of salicylate on stomatal resistance (a measure of stomatal opening) were compared with those produced by 2,4-dinitrophenol and abscisic acid. Salicylate and dinitrophenol had the same minimum effective concentration and comparable kinetics, and induced stomatal closure persisting for a long time in the absence of further supply. However, a K and Ca solution prevented the salicylate-induced, but not dinitrophenol-induced, stomatal closure. The effects of salicylate and abscisic acid had very different characteristics. Cytokinins had no relevant effects on the stomatal closure induced by the three compounds. A close correlation was found between stomatal closure and K+ leakage from the treated leaves, suggesting that damage to the cell membrane may be involved. Research work supported by CNR, Italy. Special grant I.P.R.A.-Subproject 1. Paper N. 666.  相似文献   

8.
We investigated the occurrence of patchy stomatal behavior in leaves of saplings and a forest canopy tree of Quercus crispula Blume. Through a combination of leaf gas-exchange measurements and numerical simulation, we detected patterns of stomatal closure (either uniform or patchy bimodal) coupled with depression of net assimilation rate (A). There was a clear inhibition of A associated with stomatal closure in leaves of Q. crispula during the day, but the magnitude of inhibition varied among days and growing conditions. Comparisons of observed and simulated A values for both saplings and the canopy tree identified patterns of stomatal behavior that shifted flexibly between uniform and patchy frequency distributions depending on environmental conditions. Bimodal stomatal closure explained severe depression of A in saplings under conditions of relatively high leaf temperature and vapor pressure deficit. Model simulations of A depression through bimodal stomatal closure were corroborated by direct observations of stomatal aperture distribution using Suzuki’s Micro-Printing method; these demonstrated that there was a real bimodal frequency distribution of stomatal apertures. Although there was a heterogeneous distribution of stomatal apertures both within and among patches, induction of heterogeneity in intercellular CO2 concentration among patches, and hence severe depression of A, resulted only from bimodal stomatal closure among patches (rather than within patches).  相似文献   

9.
蚕豆下表皮细胞外钙调素的存在及其对气孔运动的调节   总被引:2,自引:0,他引:2  
细胞外钙调素可能作为多肽第一信使,调节细胞增殖,花粉萌发,特定基因表达等生理过程,气孔能灵敏地对外界刺激作出反应,快速开闭,本文用免疫电镜和免疫荧光显微镜技术证明保卫细胞及其它表皮细胞胞外都存在钙调素;外源纯化钙调素能促进气孔关闭,抑制气孔开放,最适浓度为10^-8mol/L;不能透过质膜的大分子钙调素拮抗剂W—-agarose和钙调素抗血清都能抑制气孔关闭,促进开放,说明保卫细胞的内源胞外钙调素确实能促进气孔关闭,抑制开放。而且只能在细胞外起作用,推测在自然情况下,保卫细胞内源胞外钙调素可能作为胞外第一信使和其它信号分子一起调节气孔的开关运动,而且可能在环境刺激与细胞响应之间起重要作用。  相似文献   

10.
一氧化氮在乙烯诱导蚕豆气孔关闭中的作用   总被引:3,自引:0,他引:3  
以蚕豆为材料研究了一氧化氮(nitric oxide,NO)和乙烯对气孔运动的影响。结果表明,10μmol/L的NO供体硝普钠(sodium nitroprusside,SNP)以及0.04%的乙烯能明显诱导蚕豆气孔关闭,并且二者共同处理后,能够增强其促进气孔关闭的作用。乙烯合成抑制剂AVG可以减弱NO诱导气孔关闭的程度,NO清除剂c-PTIO和NR抑制剂NaN3也可减弱乙烯诱导气孔关闭的程度,而一氧化氮合酶(nitric oxide synthase,NOS)抑制剂L-NAME对乙烯诱导气孔关闭的作用不明显。推测,在调控蚕豆气孔关闭过程中,NO可能主要通过NR途径参与乙烯调控气孔关闭过程。  相似文献   

11.
细胞外钙调素可能作为多肽第一信使,调节细胞增殖、花粉萌发、特定基因表达等生理过程.气孔能灵敏地对外界刺激作出反应,快速开闭.本文用免疫电镜和免疫荧光显微镜技术证明保卫细胞及其它表皮细胞胞外都存在钙调素.外源纯化钙调素能促进气孔关闭、抑制气孔开放,最适浓度为10-8mol/L;不能透过质膜的大分子钙调素拮抗剂W7-agarose和钙调素抗血清都能抑制气孔关闭、促进开放,说明保卫细胞的内源胞外钙调素确实能促进气孔关闭、抑制开放,而且只能在细胞外起作用.推测在自然情况下,保卫细胞内源胞外钙调素可能作为胞外第一信使和其它信号分子一起调节气孔的开关运动,而且可能在环境刺激与细胞响应之间起重要作用.  相似文献   

12.
The regulative role of ABA in the rapid plant stomatal reactions in response to salinity was investigated. The influence of the short-term salinity on the overall ABA accumulation and its distribution within the mature leaf (revealed by immunohystochemical technique) and stomatal conductance of barley (Hordeum vulgare L.) were determined. Rapid bulk leaf ABA accumulation and increase in ABA immunolabeling in the mesophyl and guard cells of stomata were shown. The bulk ABA increasing in mature barley leaves coincided with stomatal closure induced by salt treatment indicating on the ABA contribution to the rapid stomatal closure.  相似文献   

13.
Water deficit and the resulting osmotic stress affect stomatal movement. There are two types of signals, hydraulic and chemical signals, involving in the regulation of stomatal behavior responses to osmotic stress. Compared with the chemical signals, little has been known about the hydraulic signals and the corresponding signal transduction network and regulatory mechanisms. Here, using an epidermal‐strip bioassay and laser‐scanning confocal microscopy, we provide evidence that nitric oxide (NO) generation in Vicia faba guard cells can be induced by hydraulic signals. We used polyethylene glycol (PEG) 600 to simulate hypertonic conditions. This hydraulic signal led to stomatal closure and rapid promotion of NO production in guard cells. The effects were decreased by NO scavenger 2‐(4‐carboxyphenyl)‐4,4,5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (c‐PTIO) and NO synthase (Enzyme Commission 1.14.13.39) inhibitor NG‐nitro‐ l ‐Arg‐methyl ester (l ‐NAME). These results indicate that PEG 6000 induces stomatal closure by promoting NO production. Cytochalasin B (CB) inhibited stomatal closure induced by PEG 6000 but did not prevent the increase of endogenous NO levels, indicating that microfilaments polymerization participate in stomatal closure induced by PEG 6000, and may act downstream of NO signaling. In addition, big vacuoles split into many small vacuoles were observed in response to PEG 6000 and sodium nitroprusside (SNP) treatment, and CB inhibited these changes of vacuoles, the stomatal closure was also been inhibited. Collectively, these results suggest that the stomatal closure induced by PEG 6000 may be intimately associated with NO levels, reorganization of actin filaments and the changes of vacuoles, showing a crude outline of guard‐cells signaling process in response to hydraulic signals.  相似文献   

14.
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca2+ ([Ca2+]cyt) elevation was partially blocked, and exogenous Ca2+-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca2+ increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca2+, and microtubules are essential for ABA signaling.  相似文献   

15.
The stomatal resistance of individual leaves of young cotton plants (Gossypium hirsutum L. var. Stoneville 213) was measured during a period of soil moisture stress under conditions of constant evaporative demand. When plants were subjected to increasing soil water stress, increases in stomatal resistance occurred first on the lower leaves and the stomata on the upper surfaces were the most sensitive to decreasing leaf-water potential. Stomatal closure proceeded from the oldest leaves to the youngest as the stress became more severe. This apparent effect of leaf age was not due to radiation differences during the stress period. Radiation adjustments on individual leaves during their development altered the stomatal closure potential for all leaves, but did not change the within-plant pattern. Our data indicate that no single value of leaf water potential will adequately represent a threshold for stomatal closure in cotton. Rather, the stomatal resistance of each leaf is uniquely related to its own water potential as modified by age and radiation regime during development. The effect of age on stress-induced stomatal closure was not associated with a loss of potassium from older leaves. Increases in both the free and bound forms of abscisic acid were observed in water-stressed plants, but the largest accumulations occurred in the youngest leaves. Thus, the pattern of abscisic acid accumulation in response to water stress did not parallel the pattern of stomatal closure induced by water stress.  相似文献   

16.
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.  相似文献   

17.
The direct effects of pH changes and/or abscisic acid (ABA) on stomatal aperture were examined in epidermal strips of Commelina communis L. and Arabidopsis thaliana. Stomata were initially opened at pH 7 or pH 5. The stomatal closure induced by changes in external pH and/or ABA (10 microM or 10 nM) was monitored using video microscopy and quantified in terms of changes in stomatal area using image analysis software. Measurements of aperture area enabled stomatal responses and, in particular, small changes in stomatal area to be quantified reliably. Both plant species exhibited a biphasic closure response to ABA: an initial phase of rapid stomatal closure, followed by a second, more prolonged, phase during which stomata closure proceeded at a slower rate. Changes in stomatal sensitivity to ABA were also observed. Comparison of these effects between C. communis and A. thaliana demonstrate that this differential sensitivity of stomata to ABA is species-dependent, as well as being dependent on the pH of the extracellular environment.  相似文献   

18.
Phytohormone salicylic acid (SA) plays important roles in plant responses to environmental stress. However, knowledge about the molecular mechanisms for SA affecting the stomatal movements is limited. In this paper, we demonstrated that exogenous SA significantly induced stomatal closure and nitric oxide (NO) generation in Arabidopsis guard cells based on genetic and physiological data. These effects were significantly inhibited by the NO scavenger c-PTIO, NO synthase (NOS) inhibitor L-NAME or nitrate reductase suppressor tungstate respectively, implying that NOS and nitrate reductase (NR) participate in SA-evoked stomatal closing. Furthermore, the effects of SA promotion of stomatal closure and NO synthesis are significantly suppressed in NR single mutants of nia1, nia2 or double mutant nia1/nia2, compared with the wild type plants. This suggests that both Nia1 and Nia2 are involved in SA-stimulated stomatal closure. In addition, pharmacological experiments showed that protein kinases, cGMP and cADPR are involved in SA-mediated NO accumulation and stomatal closure induced by SA in Arabidopsis.  相似文献   

19.
NO和H2O2在光/暗调控蚕豆气孔运动中的作用及其相互关系   总被引:10,自引:0,他引:10  
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H_2O_2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索。结果显示,光下外源NO供体硝普钠(SNP)和H_2O_2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂N~G-氮-L-精氨酸-甲酯(L-NAME)和H_2O_2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H_2O_2水平比暗中明显降低。上述结果表明,光/暗通过影响保卫细胞NO和H_2O_2的水平调控气孔运动。研究还发现,光下H_2O_2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H_2O_2的这些效应;光下SNP既诱导H_2O_2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转。这些结果表明,NO和H_2O_2在生成及效应上均存在明显的相互作用。另外,L-NAME显著逆转暗和光下H_2O_2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H_2O_2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭。  相似文献   

20.
The question as to what triggers stomatal closure during leaf desiccation remains controversial. This paper examines characteristics of the vascular and photosynthetic functions of the leaf to determine which responds most similarly to stomata during desiccation. Leaf hydraulic conductance (K(leaf)) was measured from the relaxation kinetics of leaf water potential (Psi(l)), and a novel application of this technique allowed the response of K(leaf) to Psi(l) to be determined. These "vulnerability curves" show that K(leaf) is highly sensitive to Psi(l) and that the response of stomatal conductance to Psi(l) is closely correlated with the response of K(leaf) to Psi(l). The turgor loss point of leaves was also correlated with K(leaf) and stomatal closure, whereas the decline in PSII quantum yield during leaf drying occurred at a lower Psi(l) than stomatal closure. These results indicate that stomatal closure is primarily coordinated with K(leaf). However, the close proximity of Psi(l) at initial stomatal closure and initial loss of K(leaf) suggest that partial loss of K(leaf) might occur regularly, presumably necessitating repair of embolisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号