首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated plasma lipid and nonesterified fatty acid concentrations reduce insulin-mediated glucose disposal in skeletal muscle. Cultured myoblasts from 21 subjects were studied for rates of palmitate oxidation and the effect of palmitate on glycogen synthase activity at the end of an 18-h incubation in serum- and glucose-free media. Oxidation rates of 40 microM palmitate in cultured myoblasts correlated with the fasting glucose (r = 0.71, P = 0.001), log fasting insulin (r = 0.52, P = 0.03), and insulin-mediated glucose storage rate (r = -0.50, P = 0.04) of the muscle donors. Myoblast glycogen synthase activity can be regulated by 240 microM palmitate, but the changes are associated with the basal respiratory quotient and not with the insulin resistance of the muscle donor. These results indicate that myoblasts producing elevated palmitate oxidation rates in vitro can be used to identify skeletal muscle abnormalities which are primary contributors to insulin resistance in vivo. Effects of 240 microM palmitate on myoblast glycogen synthase activity appear to be mechanistically different from the relationship between myoblast palmitate oxidation rates and insulin resistance of the muscle donor.  相似文献   

2.
Elevated levels of free fatty acids contribute to cardiovascular diseases, but the mechanisms remain poorly understood. The present study was aimed to determine if free fatty acid inhibits the AMP-activated kinase (AMPK). Exposure of cultured bovine aortic endothelial cells (BAECs) to palmitate (0.4 mM) but not to palmitoleic or oleic acid (0.4 mM) for 40 h significantly reduced the Thr(172) phosphorylation of AMPK-alpha without altering its protein expression or the phosphorylation of LKB1-Ser(428), a major AMPK kinase in BAECs. Further, in LKB1-deficient cells, palmitate suppressed AMPK-Thr(172) implying that the inhibitory effects of palmitate on AMPK might be independent of LKB1. In contrast, 2-bromopalmitate, a non-metabolizable analog of palmitate, did not alter the phosphorylation of AMPK and acetyl-CoA carboxylase. Further, palmitate significantly increased the activity of protein phosphatase (PP)2A. Inhibition of PP2A with either okadaic acid, a selective PP2A inhibitor, or PP2A small interference RNA abolished palmitate-induced inhibition on AMPK-Thr(172) phosphorylation. Exposure of BAECs to C(2)-ceramide, a cell-permeable analog of ceramide, mimicked the effects of palmitate. Conversely, fumonisin B1, which selectively inhibits ceramide synthase and decreases de novo formation of ceramide, abolished the effects of palmitate on both PP2A and AMPK. Inhibition of AMPK in parallel with increased PP2A activity was founded in C57BL/6J mice fed with high fat diet (HFD) rich in palmitate but not in mice fed with HFD rich in oleate. Moreover, inhibition of PP2A with PP2A-specific siRNA but not scrambled siRNA reversed HFD-induced inhibition on the phosphorylation of AMPK-Thr(172) and endothelial nitric-oxide synthase (eNOS)-Ser(1177) in mice fed with high fat diets. Taken together, we conclude that palmitate inhibits the phosphorylation of both AMPK and endothelial nitric-oxide synthase in endothelial cells via ceramide-dependent PP2A activation.  相似文献   

3.
Cardiac dysfunction is a severe secondary effect of Type 2 diabetes. Recruitment of the protein kinase B/glycogen synthase kinase-3 pathway represents an integral event in glucose homeostasis, albeit its regulation in the diabetic heart remains undefined. Thus the following study tested the hypothesis that the regulation of protein kinase B/glycogen synthase kinase-3 was altered in the myocardium of the Zucker diabetic fatty rat. Second, exercise has been shown to improve glucose homeostasis, and, in this regard, the effect of swimming training on the regulation of protein kinase B/glycogen synthase kinase-3 in the diabetic rat heart was examined. In the sedentary Zucker diabetic fatty rats, glucose levels were elevated, and cardiac glycogen content increased, compared with wild type. A 13-wk swimming regimen significantly reduced plasma glucose levels and cardiac glycogen content and partially normalized protein kinase B-serine473, protein kinase B-threonine308, and glycogen synthase kinase-3alpha phosphorylation in Zucker diabetic fatty rats. In conclusion, hyperglycemia and increased cardiac glycogen content in the Zucker diabetic fatty rats were associated with dysregulation of protein kinase B/glycogen synthase kinase-3 phosphorylation. These anomalies in the Zucker diabetic fatty rat were partially normalized with swimming. These data support the premise that exercise training may protect the heart against the deleterious consequences of diabetes.  相似文献   

4.
ORTMEYER HK. Relationship of glycogen synthase and glycogen phosphorylase to protein phosphatase 2C and cAMP-dependent protein kinase in liver of obese rhesus monkeys. The regulation of glycogen synthase (GS) and glycogen phosphorylase (GP) activity by phosphorylation/ dephosphorylation has been proposed to be via changes in activities of several different protein (serine/ threonine) phosphatases and kinases, including protein phosphatase (PP) 1/2A, PP2C, and cAMP-dependent protein kinase (PKA). In order to determine whether PP1/2A, PP2C, and/or PKA activities are related to GS and/or GP activities, these enzymes were measured in freeze-clamped liver biopsies obtained under basal fasting conditions from 16 obese monkeys. Four monkeys were normoglycemic and normoinsulinemic, five were hyperinsulinemic, and seven had type 2 diabetes (NIDDM). Liver glycogen and glucose 6-phosphate (G6P) contents were also determined. Basal enzyme activities and basal substrate concentrations were not significantly different between the three groups of obese monkeys; however, there were several significant linear relationships observed when the monkeys were treated as one group. Therefore, multiple regression was used to determine the correlation between key variables. GS fractional activity was correlated to GP fractional activity (p<0. 05) and to PP2C activity (p=0. 005) (adjusted R2,53%). GP independent activity was correlated to GS independent activity (p<0. 07) and to PKA fractional activity (p=0. 005) (adjusted R2,64%). PP2C activity was correlated to GS fractional activity (p<0. 0005) and to PP1/2A activity G7<0. 0001) (adjusted R2,83%). PKA fractional activity was correlated to GP total activity (p<0. 0005) and to age (p=0. 001) (adjusted R282%). G6P content was correlated to glycogen content (p<0. 05) and to PP2C activity (p=0. 0005) (adjusted R2,73%). In conclusion, PP2C and PKA are involved in the regulation of GS and GP activity in the basal state in liver of obese monkeys with a wide range of glucose tolerance.  相似文献   

5.
We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.  相似文献   

6.
Our previous studies have assessed ginsenoside Rg1 (Rg1)‐mediated protection in a type 1 diabetes rat model. To uncover the mechanism through which Rg1 protects against cardiac injury induced by diabetes, we mimicked diabetic conditions by culturing H9C2 cells in high glucose/palmitate. Rg1 had no toxic effect, and it alleviated the high glucose/palmitate damage in a dose‐dependent manner, as indicated by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and lactate dehydrogenase release to the culture medium. Rg1 prevented high glucose/palmitate‐induced cell apoptosis, assessed using cleaved caspase‐3 and terminal deoxynucleotidyl transferase dUTP nick end labelling staining. Rg1 also reduced high glucose‐/palmitate‐induced reactive oxygen species formation and increased intracellular antioxidant enzyme activity. We found that Rg1 activates protein kinase B (AKT)/glycogen synthase kinase‐3 (GSK‐3β) pathway and antioxidant nuclear factor erythroid 2‐related factor 2 (Nrf2) pathway, indicated by increased phosphorylation of AKT and GSK‐3β, and nuclear translocation of Nrf2. We used phosphatidylinositol‐3‐kinase inhibitor Ly294002 to block the activation of the AKT/GSK‐3β pathway and found that it partially reversed the protection by Rg1 and decreased Nrf2 pathway activation. The results suggest that Rg1 exerts a protective effect against high glucose and palmitate damage that is partially AKT/GSK‐3β/Nrf2‐mediated. Further studies are required to validate these findings using primary cardiomyocytes and animal models of diabetes.  相似文献   

7.
8.
1. Palmitate oxidation rates and activities of creatine kinase, cytochrome c oxidase and citrate synthase were determined in homogenates of three different human muscles and their derived muscle cell cultures. Palmitate oxidation was also assayed in intact cultured cells (myotubes). 2. Biopsies obtained from m. rectus abdominis exhibited a lower palmitate oxidation rate and lower activities of citrate synthase and cytochrome c oxidase than those from m. gluteus and m. quadriceps. In contrast, cell cultures obtained from the three muscles were mutually comparable with regard to these mitochondrial activities. 3. Although cell cultures only reached a low differentiation grade (judged by the total creatine kinase activity and percentage isoenzyme-MM) they are well comparable with the original biopsies with respect to citrate synthase activity and capacity of palmitate oxidation. The activity of cytochrome c oxidase was clearly lower in the cultured cells. 4. Palmitate was more completely oxidized in intact myotubes than in homogenates of myotubes. Apparent Km and Vmax values of palmitate oxidation did not differ significantly in homogenates and intact preparations of myotubes.  相似文献   

9.
10.
Glycogen-binding subunits for protein phosphatase-1 (PP1) target the PP1 catalytic subunit (PP1C) to glycogen particles, where the enzymes glycogen synthase and glycogen phosphorylase are concentrated. Here we identify sites within the striated muscle glycogen-binding subunit (G(M)) that mediate direct binding to glycogen synthase. Both PP1C and glycogen synthase were coimmunoprecipitated with a full-length FLAG-tagged G(M) transiently expressed in COS7 cells or C2C12 myotubes. Deletion and mutational analysis of a glutathione S-transferase (GST) fusion of the N-terminal domain of G(M) (residues 1-240) identified two putative sites for binding to glycogen synthase, one of which is the WXNXGXNYX(I/L) motif that is conserved among the family of PP1 glycogen-binding subunits. Either deletion of this motif or Ala substitution of Asn-228 in this motif disrupted the binding of glycogen synthase. Expression of full-length FLAG-G(M) in cells increased the activity of endogenous glycogen synthase, but protein disabled in either PP1 binding or glycogen synthase binding did not produce synthase activation. The results show that efficient activation of glycogen synthase requires a scaffold function of G(M) that involves simultaneous binding of both PP1C and glycogen synthase. Isoproterenol and forskolin treatment of cells decreased glycogen synthase binding to FLAG-G(M), thereby limiting synthase activation by PP1. This response was insensitive to inhibition by H-89, therefore probably not involving cAMP-dependent protein kinase, but did require inclusion of microcystin-LR during cell lysis, implying that phosphorylation was modulating binding of glycogen synthase. Phosphorylation control of binding to a scaffold site on the G(M) subunit of PP1 offers a new mechanism for regulation of muscle glycogen synthase in response to beta-adrenergic signals.  相似文献   

11.
We have employed C2C12 myotubes to investigate lipid inhibition of insulin-stimulated signal transduction and glucose metabolism. Cells were preincubated for 18 h in the absence or presence of free fatty acids (FFAs) and stimulated with insulin, and the effects on glycogen synthesis and signaling intermediates were determined. While the unsaturated FFAs oleate and linoleate inhibited both basal and insulin-stimulated glycogen synthesis, the saturated FFA palmitate reduced only insulin-stimulated glycogen synthesis, and was found to inhibit insulin-stimulated phosphorylation of glycogen synthase kinase-3 and protein kinase B (PKB). However, no effect of palmitate was observed on tyrosine phosphorylation, p85 association, or phosphatidylinositol 3-kinase activity in IRS-1 immunoprecipitates. In contrast, palmitate promoted phosphorylation of mitogen-activated protein MAP) kinases. Ceramide, a derivative of palmitate, has recently been associated with similar inhibition of PKB, and here, ceramide levels were found to be elevated 2-fold in palmitate-treated C2C12 cells. Incubation of C2C12 cells with ceramide closely reproduced the effects of palmitate, leading to inhibition of glycogen synthesis and PKB and to stimulation of MAP kinase. We conclude that palmitate-induced insulin resistance occurs by a mechanism distinct from that of unsaturated FFAs, and involves elevation of ceramide by de novo synthesis, leading to PKB inhibition without affecting IRS-1 function.  相似文献   

12.
The role of glycogen-synthase kinase 3 (GSK3) in insulin-stimulated glucose transport and glycogen synthase activation was investigated in 3T3-L1 adipocytes. GSK3 protein was clearly present in adipocytes and was found to be more abundant than in muscle and liver cell lines. The selective GSK3 inhibitor, LiCl, stimulated glucose transport and glycogen synthase activity (20 and 65%, respectively, of the maximal (1 microm) insulin response) and potentiated the responses to a submaximal concentration (1 nm) of insulin. LiCl- and insulin-stimulated glucose transport were abolished by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin; however, LiCl stimulation of glycogen synthase was not. In contrast to the rapid stimulation of glucose transport by insulin, transport stimulated by LiCl increased gradually over 3-5 h reaching 40% of the maximal insulin-stimulated level. Both LiCl- and insulin-stimulated glycogen synthase activity were maximal at 25 min. However, insulin-stimulated glycogen synthase activity returned to basal after 2 h, coincident with reactivation of GSK3. After a 2-h exposure to insulin, glycogen synthase was refractory to restimulation with insulin, indicating selective desensitization of this pathway. However, LiCl could partially stimulate glycogen synthase in desensitized cells. Furthermore, coincubation with LiCl during the 2 h exposure to insulin completely blocked desensitization of glycogen synthase activity. In summary, inhibition of GSK3 by LiCl: 1) stimulated glycogen synthase activity directly and independently of PI3-kinase, 2) stimulated glucose transport at a point upstream of PI3-kinase, 3) stimulated glycogen synthase activity in desensitized cells, and 4) prevented desensitization of glycogen synthase due to chronic insulin treatment. These data are consistent with GSK3 playing a central role in the regulation of glycogen synthase activity and a contributing factor in the regulation of glucose transport in 3T3-L1 adipocytes.  相似文献   

13.

Background

The combination of elevated glucose and free-fatty acids (FFA), prevalent in diabetes, has been suggested to be a major contributor to pancreatic β-cell death. This study examines the synergistic effects of glucose and FFA on β-cell apoptosis and the molecular mechanisms involved. Mouse insulinoma cells and primary islets were treated with palmitate at increasing glucose and effects on apoptosis, endoplasmic reticulum (ER) stress and insulin receptor substrate (IRS) signaling were examined.

Principal Findings

Increasing glucose (5–25 mM) with palmitate (400 µM) had synergistic effects on apoptosis. Jun NH2-terminal kinase (JNK) activation peaked at the lowest glucose concentration, in contrast to a progressive reduction in IRS2 protein and impairment of insulin receptor substrate signaling. A synergistic effect was observed on activation of ER stress markers, along with recruitment of SREBP1 to the nucleus. These findings were confirmed in primary islets. The above effects associated with an increase in glycogen synthase kinase 3β (Gsk3β) activity and were reversed along with apoptosis by an adenovirus expressing a kinase dead Gsk3β.

Conclusions/Significance

Glucose in the presence of FFA results in synergistic effects on ER stress, impaired insulin receptor substrate signaling and Gsk3β activation. The data support the importance of controlling both hyperglycemia and hyperlipidemia in the management of Type 2 diabetes, and identify pancreatic islet β-cell Gsk3β as a potential therapeutic target.  相似文献   

14.
Synergism of glucose and fructose in net glycogen synthesis was studied in perfused livers from 24-h fasted rats. With either glucose or fructose alone, net glycogen deposition did not occur (p greater than 0.10 for each), whereas the addition of both together resulted in significant glycogen accumulation (net glycogen accumulation was 0.21 +/- 0.03 mumol of glucose/g of liver/min at 2 mM fructose and 30 mM glucose, p less than 0.001). To better understand this synergism, intermediary substrate levels were compared at steady state with various glucose levels in the absence and in the presence of 2 mM fructose. Independent of fructose, hepatic glucose and glucose 6-phosphate increased proportionally when glucose level in the medium was raised (r = 0.86, p less than 0.001). Unlike glucose 6-phosphate, UDP-glucose did not consistently increase with glucose (p greater than 0.10); in fact, there was a small decrease at a very high glucose level (30 mM), a result consistent with the well-established activation of glycogen synthase by glucose. With elevated glucose, the level of glucose 6-phosphate was strongly correlated with glycogen content (r = 0.71, p less than 0.01, slope = 32). Adding fructose increased the "efficiency" of glucose 6-phosphate to glycogen conversion: the effect of a given increment in glucose 6-phosphate upon glycogen accumulation was increased 2.6-fold (r = 0.73, p less than 0.01, slope = 86). A kinetic modeling approach was used to investigate the mechanisms by which fructose synergized glycogen accumulation when glucose was elevated. Based on steady-state hepatic substrate levels, net hepatic glucose output, and net glycogen synthesis rate, the model estimated the rate constants of major enzymes and individual fluxes in the glycogen metabolic pathway. Modeling analysis is consistent with the following scenario: glycogen synthase is activated by glucose, whereas glucose-6-phosphatase was inhibited. In addition, the model supports the hypothesis that fructose synergizes net glycogen accumulation due to suppression of phosphorylase. Overall, our analysis suggests that glucose enhances the metabolic flux to glycogen by inducing a build up of glucose 6-phosphate via combined effects of mass action and glucose-6-phosphatase inhibition and activating glycogen synthase and that fructose enhances glycogen accumulation by retaining glycogen via phosphorylase inhibition.  相似文献   

15.
The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.  相似文献   

16.
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.  相似文献   

17.
Oxidative stress can impact the regulation of glucose transport activity in a variety of cell lines. In the present study, we assessed the direct effects of an oxidant stress on the glucose transport system in intact mammalian skeletal muscle preparations. Type IIb (epitrochlearis) and type I (soleus) muscles from insulin-sensitive lean Zucker rats were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase to produce the oxidant hydrogen peroxide (H(2)O(2)) (60-90 microM). Glucose transport, glycogen synthase activity, and metabolic signaling factors were then assessed. H(2)O(2) significantly (p < 0.05) activated basal glucose transport and glycogen synthase activities and increased insulin receptor tyrosine phosphorylation, insulin receptor substrate-1 associated with the p85 subunit of phosphatidylinositol-3' kinase (PI3-kinase), and Ser(473) phosphorylation of Akt in both muscle types. This induction of glucose transport by the oxidant stress was prevented by the PI3-kinase inhibitor wortmannin. The oxidant stress also significantly increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and 5'-AMP-dependent protein kinase. Interestingly, selective inhibition of p38 MAPK using A304000 substantially reduced the activation of glucose transport induced by the oxidant stress. These results support a direct role for oxidative stress in the activation of the glucose transport system in mammalian skeletal muscle and indicate that this process involves engagement of and possible interactions between the PI3-kinase-dependent signaling pathway and activation of p38 MAPK.  相似文献   

18.
Rat hearts were perfused for 1 h with 5 mm glucose with or without palmitate or oleate at concentrations characteristic of the fasting state. The inclusion of fatty acids resulted in increased activities of the alpha-1 or the alpha-2 isoforms of AMP-activated protein kinase (AMPK), increased phosphorylation of acetyl-CoA carboxylase and a decrease in the tissue content of malonyl-CoA. Activation of AMPK was not accompanied by any changes in the tissue contents of ATP, ADP, AMP, phosphocreatine or creatine. Palmitate increased phosphorylation of Thr172 within AMPK alpha-subunits and the activation by palmitate of both AMPK isoforms was abolished by protein phosphatase 2C leading to the conclusion that exposure to fatty acid caused activation of an AMPK kinase or inhibition of an AMPK phosphatase. In vivo, 24 h of starvation also increased heart AMPK activity and Thr172 phosphorylation of AMPK alpha-subunits. Perfusion with insulin decreased both alpha-1 and alpha-2 AMPK activities and increased malonyl-CoA content. Palmitate prevented both of these effects. Perfusion with epinephrine decreased malonyl-CoA content without an effect on AMPK activity but prevented the activation of AMPK by palmitate. The concept is discussed that activation of AMPK by an unknown fatty acid-driven signalling process provides a mechanism for a 'feed-forward' activation of fatty acid oxidation.  相似文献   

19.
O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. Here we report on regulation of O-GlcNAcylation over a broad range of glucose concentrations. We have discovered a significant induction of O-GlcNAc modification of a limited number of proteins under conditions of glucose deprivation. Beginning 12 h after treatment, glucose-deprived human hepatocellular carcinoma (HepG2) cells demonstrate a 7.8-fold increase in total O-GlcNAc modification compared with cells cultured in normal glucose (5 mm; p = 0.008). Some of the targets of glucose deprivation-induced O-GlcNAcylation are distinct from those modified in response to high glucose (20 mm) or glucosamine (10 mm) treatment, suggesting differential targeting with glucose deprivation and glucose excess. O-GlcNAcylation of glycogen synthase is significantly increased with glucose deprivation, and this O-GlcNAc increase contributes to a 60% decrease (p = 0.004) in glycogen synthase activity. Increased O-GlcNAc modification is not mediated by increased UDP-GlcNAc, the rate-limiting substrate for O-GlcNAcylation. Rather, the mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (OGT) increases 3.4-fold within 6 h of glucose deprivation (p = 0.006). Within 12 h, OGT protein increases 1.7-fold (p = 0.01) compared with normal glucose-treated cells. In addition, 12-h glucose deprivation leads to a 49% decrease in O-GlcNAcase protein levels (p = 0.03). We conclude that increased O-GlcNAc modification stimulated by glucose deprivation results from increased OGT and decreased O-GlcNAcase levels and that these changes affect cell metabolism, thus inactivating glycogen synthase.  相似文献   

20.
Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser(645), Ser(649), Ser(653), Ser(657)) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. "Insulin resistance" is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号