首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Hemorrhagic shock (HS) due to major trauma and surgery predisposes the host to the development of systemic inflammatory response syndrome (SIRS), including acute lung injury (ALI), through activating and exaggerating the innate immune response. IL-1β is a crucial proinflammatory cytokine that contributes to the development of SIRS and ALI. Lung endothelial cells (EC) are one important source of IL-1β, and the production of active IL-1β is controlled by the inflammasome. In this study, we addressed the mechanism underlying HS activation of the inflammasome in lung EC. We show that high mobility group box 1 acting through TLR4, and a synergistic collaboration with TLR2 and receptor for advanced glycation end products signaling, mediates HS-induced activation of EC NAD(P)H oxidase. In turn, reactive oxygen species derived from NAD(P)H oxidase promote the association of thioredoxin-interacting protein with the nucleotide-binding oligomerization domain-like receptor protein NLRP3 and subsequently induce inflammasome activation and IL-1β secretion from the EC. We also show that neutrophil-derived reactive oxygen species play a role in enhancing EC NAD(P)H oxidase activation and therefore an amplified inflammasome activation in response to HS. The present study explores a novel mechanism underlying HS activation of EC inflammasome and thus presents a potential therapeutic target for SIRS and ALI induced after HS.  相似文献   

2.
Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) remain a major cause of morbidity and mortality in critically ill patients, and no specific therapies are still available to control the mortality rate. Thus, we explored the preventive and therapeutic effects of tannic acid (TA), a natural polyphenol in the context of ALI. We used in vivo and in vitro models, respectively, using lipopolysaccharide (LPS) to induce ALI in mice and exposing J774 and BEAS-2B cells to LPS. In both preventive and therapeutic approaches, TA attenuated LPS-induced histopathological alterations, lipid peroxidation, lung permeability, infiltration of inflammatory cells, and the expression of proinflammatory mediators. In addition, in-vitro study showed that TA treatment could reduce the expression of proinflammatory mediators. Further studies revealed that TA-dampened inflammatory responses by downregulating the LPS-induced toll-like receptor 4 (TLR4) expression and inhibiting extracellular-signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, cells treated with the inhibitors of ERK1/2 (PD98059) and p38 (SB203580) mitigated the expression of cytokines induced by LPS, thus suggesting that ERK1/2 and p38 activity are required for the inflammatory response. In conclusion, TA could attenuate LPS-induced inflammation and may be a potential therapeutic agent for ALI-associated inflammation in clinical settings.  相似文献   

3.
4.
Resuscitated hemorrhagic shock is believed to promote the development of acute lung injury (ALI) by priming the immune system for an exaggerated inflammatory response to a second trivial stimulus. This work explored effects of TLR4 on hemorrhage-induced ALI and “second-hit” responses, and further explore the mechanisms involved in “second-hit” responses. Expression of HO-1, IL-10, lung W/D and MPO markedly increased at nearly all time-points examined in HSR/LPS group as compared with sham/LPS group in WT mice. In HSR/LPS mice, the induced amount of IL-10 and the expressions of HO-1 of WT mice were significantly higher compared with TLR-4d/d. This study provides in vivo evidence that pulmonary infections after LPS instillation contribute to local tissue release of pro-inflammatory mediators after HSR systemic. Activation of TLR4 might induce HO-1 expression and HO-1 modulates proinflammatory responses that are triggered via TLR4 signaling.  相似文献   

5.
Sepsis, a serious unbalanced hyperinflammatory condition, is a tremendous burden for healthcare systems, with a high mortality and limited treatment. Increasing evidences indicated that some active components derived from natural foods have potent anti-inflammatory properties. Here we show that mangiferin (MF), a natural glucosyl xanthone found in both mango and papaya, attenuates cecal ligation and puncture-induced mortality and acute lung injury (ALI), as indicated by reduced systemic and pulmonary inflammatory responses. Moreover, pretreatment with MF inhibits sepsis-activated mitogen-activated protein kinases and nuclear factor kappa-light-chain-enhancer of activated B cells signaling, resulting in inhibiting production of proinflammatory mediators. Notably, MF dose-dependently up-regulates the expression and activity of heme oxygenase (HO)-1 in the lung of septic mice. Further, these beneficial effects of MF on the septic lung injury were eliminated by ZnPP IX, a specific HO-1 inhibitor. Our results suggest that MF attenuates sepsis by up-regulation of HO-1 that protects against sepsis-induced ALI through inhibiting inflammatory signaling and proinflammatory mediators. Thereby, MF may be effective in treating sepsis with ALI.  相似文献   

6.
Oxidative stress and inflammation contributed to the propagation of acute liver injury (ALI). The present study was undertaken to determine whether D-galactosamine (D-GalN) induces ALI via the mitochondrial apoptosis- and proinflammatory cytokine-signaling pathways, and possible mechanism(s) by which green tea (GT) extract modulates the apoptotic and proinflammatory signaling in rat. D-GalN induced hepatic hypoxia/hypoperfusion and triggered reactive oxygen species (ROS) production from affected hepatocytes, infiltrated leukocytes, and activated Kupffer cells. D-GalN evoked cytosolic Bax and mitochondrial cytochrome C translocation and activated proinflammatory nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) translocation, contributing to the increase of intercellular adhesion molecule-1 expression, terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL)-positive hepatocytes, multiple plasma cytokines and chemokines release, and alanine aminotransferase (ALT) activity. An altered biliary secretion profile of several acute phase proteins directly indicates oxidative stress affecting intracellular trafficking in the hepatocyte. GT pretreatment attenuated ROS production, mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, plasma ALT and cytokines levels, biliary acute phase proteins secretion and hepatic pathology by the enhancement of anti-apoptotic mechanisms. In conclusion, D-GalN induced ALI via hypoxia/hypoperfusion-enhanced mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, contributing to oxidative stress and inflammation in the liver. GT can counteract the D-GalN-induced ALI via the attenuation of apoptotic and proinflammatory signaling by the upregulation of anti-apoptotic mechanism.  相似文献   

7.
Chen CC  Wang SS  Tsay SH  Lee FY  Lu RH  Chang FY  Lee SD 《Cytokine》2006,33(2):95-99
Gabexate mesilate is a synthetic protease inhibitor. The effectiveness of gabexate mesilate in patients with acute pancreatitis is controversial. Proinflammatory cytokines are associated with systemic inflammatory response syndrome (SIRS) in acute pancreatitis. A compensatory anti-inflammatory response occurs in parallel with SIRS. We investigated the effects of gabexate mesilate on acute necrotizing pancreatitis in rats, emphasizing the changes in serum levels of proinflammatory and anti-inflammatory cytokines. Acute necrotizing pancreatitis was induced by retrograde infusion of sodium taurodeoxycholate into the pancreatobiliary duct in rats. The rats were divided into three groups. Group I was given gabexate mesilate 2 mg/kg/h i.v. continuously 1 h before the induction of acute pancreatitis. Group II was given gabexate mesilate the same dose immediately after the induction of acute pancreatitis. Group III was given normal saline as the controls. Serum levels of amylase, lipase, tumor necrosis factor alpha, interleukin-6, and interleukin-10, pancreatic histopathology and hemodynamics were examined at 5h after the induction of acute pancreatitis. Gabexate mesilate significantly reduced serum levels of amylase, lipase, tumor necrosis factor alpha and interleukin-6 at 5 h. Serum levels of interleukin-10 significantly increased in Group I, as compared with Groups II and III. The severity of pancreatic histopathology, the reduction of mean arterial pressure, the volume of ascites and pancreatic wet weight/body weight ratios were also significantly improved by the administration of gabexate mesilate. The beneficial effects of gabexate mesilate on acute pancreatitis may be, in part, due to the modulation of inflammatory cytokine responses.  相似文献   

8.
Abstract

Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). IRI-induced AKI releases proinflammatory cytokines (e.g. IL-1β, TNF-α, IL-6) that induce a systemic inflammatory response, resulting in proinflammatory cells recruitment and remote organ damage. AKI is associated with poor outcomes, particularly when extrarenal complications or distant organ injuries occur. Acute lung injury (ALI) is a major remote organ dysfunction associated with AKI. Hence, kidney-lung cross-talk remains a clinical challenge, especially in critically ill population. The stress-responsive enzyme, heme oxygenase-1 (HO-1) is largely known to protect against renal IRI and may be preventively induced using hemin prior to renal insult. However, the use of hemin-induced HO-1 to prevent AKI-induced ALI remains poorly investigated. Mice received an intraperitoneal injection of hemin or sterile saline 1?day prior to surgery. Twenty-four hours later, mice underwent bilateral renal IRI for 26?min or sham surgery. After 4 or 24?h of reperfusion, mice were sacrificed. Hemin-induced HO-1 improved renal outcomes after IRI (i.e. fewer renal damage, renal inflammation, and oxidative stress). This protective effect was associated with a dampened systemic inflammation (i.e. IL-6 and KC). Subsequently, mitigated lung inflammation was found in hemin-treated mice (i.e. neutrophils influx and lung KC). The present study demonstrates that hemin-induced HO-1 controls the magnitude of renal IRI and the subsequent AKI-induced ALI. Therefore, targeting HO-1 represents a promising approach to prevent the impact of renal IRI on distant organs, such as lung.  相似文献   

9.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), caused by influenza A virus H5N1 and severe acute respiratory syndrome coronavirus (SARS-CoV), supposedly depend on activation of the oxidative-stress machinery that is coupled with innate immunity, resulting in a strong proinflammatory host response. Inflammatory cytokines, such as interleukin 1β (IL-1β), IL-8, and IL-6, play a major role in mediating and amplifying ALI/ARDS by stimulating chemotaxis and activation of neutrophils. To obtain further insight into the pathogenesis of SARS-CoV-associated ALI, we compared SARS-CoV infections in two different nonhuman primate species, cynomolgus macaques and African green monkeys. Viral titers in the upper and lower respiratory tract were not significantly different in SARS-CoV-infected macaques and African green monkeys. Inflammatory cytokines that play a major role in mediating and amplifying ALI/ARDS or have neutrophil chemoattractant activity, such as IL-6, IL-8, CXCL1, and CXCL2, were, however, induced only in macaques. In contrast, other proinflammatory cytokines and chemokines, including osteopontin and CCL3, were upregulated in the lungs of African green monkeys to a significantly greater extent than in macaques. Because African green monkeys developed more severe ALI than macaques, with hyaline membrane formation, some of these differentially expressed proinflammatory genes may be critically involved in development of the observed pathological changes. Induction of distinct proinflammatory genes after SARS-CoV infection in different nonhuman primate species needs to be taken into account when analyzing outcomes of intervention strategies in these species.  相似文献   

10.
Acute lung injury (ALI) is mediated by an early proinflammatory response resulting from either a direct or indirect insult to the lung mediating neutrophil infiltration and consequent disruption of the alveolar capillary membrane ultimately leading to refractory hypoxemia. The mitogen-activated protein kinase (MAPK) pathways are a key component of the molecular response activated by those insults triggering the proinflammatory response in ALI. The MAPK pathways are counterbalanced by a set of dual-specific phosphatases (DUSP) that deactivate the kinases by removing phosphate groups from tyrosine or threonine residues. We have previously shown that one DUSP, MKP-2, regulates the MAPK pathway in a model of sepsis-induced inflammation; however, the role of MKP-2 in modulating the inflammatory response in ALI has not been previously investigated. We utilized both MKP-2-null (MKP-2(-/-)) mice and MKP-2 knockdown in a murine macrophage cell line to elucidate the role of MKP-2 in regulating inflammation during ALI. Our data demonstrated attenuated proinflammatory cytokine production as well as decreased neutrophil infiltration in the lungs of MKP-2(-/-) mice following direct, intratracheal LPS. Importantly, when challenged with a viable pathogen, this decrease in neutrophil infiltration did not impact the ability of MKP-2(-/-) mice to clear either gram-positive or gram-negative bacteria. Furthermore, MKP-2 knockdown led to an attenuated proinflammatory response and was associated with an increase in phosphorylation of ERK and induction of a related DUSP, MKP-1. These data suggest that altering MKP-2 activity may have therapeutic potential to reduce lung inflammation in ALI without impacting pathogen clearance.  相似文献   

11.
The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.  相似文献   

12.
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target.  相似文献   

13.
The relationships between cytokine responses in septic shock are currently poorly understood. Some studies have pointed to a biphasic model, with an initial proinflammatory phase, followed by a reactive, anti-inflammatory response to explain the pathogenesis of the most severe form of sepsis. However, evidence for the coexistence of both responses has been found. In this study, the plasma levels of 17 cytokines and chemokines, in 20 patients with septic shock, 11 patients with systemic inflammatory response syndrome (SIRS), during the first 24 hours following diagnosis, and 10 healthy controls, were analyzed and compared. Patients with septic shock showed increased levels of IL-6, IL-8, MCP-1, MIP-1β, IFN-γ, GM-CSF and IL-10 compared to healthy controls. Patients with SIRS showed higher levels of IL-6, IL-8, MCP-1, MIP-1β, G-CSF and IL-10 than controls. Patients with septic shock showed higher levels of IL-8, GM-CSF, MIP-1β than those with SIRS. The Spearman test demonstrated a positive association between the pro-inflammatory mediators IL-6, IL-8, MCP-1, MIP-1β, IFN-γ, GM-CSF and the immunomodulatory cytokine IL-10 in septic shock. Consequently, correlation studies supported the notion that secretion of pro- and anti-inflammatory mediators in septic shock occurs as a simultaneous immune response program initiated early in the course of the disease, revealing that both types of cytokine play a role from the very beginning of this life-threatening condition.  相似文献   

14.
Stress involves real or perceived changes within an organismin the environment that activate an organism's attempts to copeby means of evolutionarily ancient neural and endocrine mechanisms.Responses to acute stressors involve catecholamines releasedin varying proportion at different sites in the sympatheticand central nervous systems. These responses may interact withand be complemented by intrinsic rythms and responses to chronicor intermittent stressors involving the hypothalamic-pituitary-adrenalaxis. Varying patterns of responses to stressors are also affectedby an animal's assessment of their prospects for successfulcoping. Subsequent central and systemic consequences of thestress response include apparent changes in affect, motivation,and cognition that can result in an altered relationship toenvironmental and social stimuli. This review will summarizerecent developments in our understanding of the causes and consequencesof stress. Special problems that need to be explored involvethe manner in which ensembles of adaptive responses are assembled,how autonomic and neurohormonal reflexes of the stress responsecome under the influence of environmental stimuli, and how somespecific aspects of the stress response may be integrated intothe life history of a species.  相似文献   

15.

Introduction

Acute kidney injury (AKI) and acute lung injury (ALI) are serious complications of sepsis. AKI is often viewed as a late complication of sepsis. Notably, the onset of AKI relative to ALI is unclear as routine measures of kidney function (BUN and creatinine) are insensitive and increase late. In this study, we hypothesized that AKI and ALI would occur simultaneously due to a shared pathophysiology (i.e., TNF-α mediated systemic inflammatory response syndrome [SIRS]), but that sensitive markers of kidney function would be required to identify AKI.

Methods

Sepsis was induced in adult male C57B/6 mice with 5 different one time doses of intraperitoneal (IP) endotoxin (LPS) (0.00001, 0.0001, 0.001, 0.01, or 0.25 mg) or cecal ligation and puncture (CLP). SIRS was assessed by serum proinflammatory cytokines (TNF-α, IL-1β, CXCL1, IL-6), ALI was assessed by lung inflammation (lung myeloperoxidase [MPO] activity), and AKI was assessed by serum creatinine, BUN, and glomerular filtration rate (GFR) (by FITC-labeled inulin clearance) at 4 hours. 20 µgs of TNF-α antibody (Ab) or vehicle were injected IP 2 hours before or 2 hours after IP LPS.

Results

Serum cytokines increased with all 5 doses of LPS; AKI and ALI were detected within 4 hours of IP LPS or CLP, using sensitive markers of GFR and lung inflammation, respectively. Notably, creatinine did not increase with any dose; BUN increased with 0.01 and 0.25 mg. Remarkably, GFR was reduced 50% in the 0.001 mg LPS dose, demonstrating that dramatic loss of kidney function can occur in sepsis without a change in BUN or creatinine. Prophylactic TNF-α Ab reduced serum cytokines, lung MPO activity, and BUN; however, post-sepsis administration had no effect.

Conclusions

ALI and AKI occur together early in the course of sepsis and TNF-α plays a role in the early pathogenesis of both.  相似文献   

16.
The paradox of dysfunctional high-density lipoprotein   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: This review addresses how, in atherosclerosis or systemic inflammation, HDL can lose its usual atheroprotective characteristics and even paradoxically assume proinflammatory properties. RECENT FINDINGS: Specific chemical and structural changes within HDL particles can impede reverse cholesterol transport, enhance oxidation of LDL, and increase vascular inflammation. HDL may be viewed as a shuttle that can be either anti-inflammatory or proinflammatory, depending on its cargo of proteins, enzymes, and lipids. Some therapeutic approaches that reduce coronary risk, such as statins and therapeutic lifestyle changes, can favorably moderate the characteristics of proinflammatory HDL. In addition, apolipoprotein A-I mimetic peptides and other compounds that target functional aspects of HDL may offer novel approaches to reduction in cardiovascular risk. SUMMARY: Current data suggest that under some conditions HDL can become dysfunctional and even proinflammatory, but this characterization can change with resolution of systemic inflammation or use of certain treatments.  相似文献   

17.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality, and have no specific therapy. Keratinocyte growth factor (KGF) is a critical factor for pulmonary epithelial repair and acts via the stimulation of epithelial cell proliferation. Mesenchymal stem cells (MSCs) have been proved as good therapeutic vectors. Thus, we hypothesized that MSC-based KGF gene therapy would have beneficial effects on lipopolysaccharide(LPS)-induced lung injury. After two hours of intratracheal LPS administration to induce lung injury, mice received saline, MSCs alone, empty vector-engineered MSCs (MSCs-vec) or KGF-engineered MSCs (MSCs-kgf) via the tail vein. The MSCs-kgf could be detected in the recipient lungs and the level of KGF expression significantly increased in the MSCs-kgf mice. The MSC-mediated administration of KGF not only improved pulmonary microvascular permeability but also mediated a down-regulation of proinflammatory responses (reducing IL-1β and TNF-α) and an up-regulation of anti-inflammatory responses (increasing cytokine IL-10). Furthermore, the total severity scores of lung injury were significantly reduced in the MSCs-kgf group compared with the other three groups. The underlying mechanism of the protective effect of KGF on ALI may be attributed to the promotion of type II lung epithelial cell proliferation and the enhancement of surfactant synthesis. These findings suggest that MSCs-based KGF gene therapy may be a promising strategy for ALI treatment.  相似文献   

18.
Acute lung injury (ALI) is a severe clinical condition responsible for high mortality and the development of multiple organ dysfunctions, because of the lack of specific and effective therapies for ALI. Increasing evidence from pre‐clinical studies supports preventive and therapeutic effects of mesenchymal stem cells (MSCs, also called mesenchymal stromal cells) in ALI/ARDS (acute respiratory distress syndrome). Therapeutic effects of MSCs were noticed in various delivery approaches (systemic, local, or other locations), multiple origins (bone marrow or other tissues), or different schedules of administrations (before or after the challenges). MSCs could reduce the over‐production of inflammatory mediators, leucocyte infiltration, tissue injury and pulmonary failure, and produce a number of benefit factors through interaction with other cells in the process of lung tissue repair. Thus, it is necessary to establish guidelines, standard operating procedures and evaluation criteria for translating MSC‐based therapies into clinical application for patients with ALI.  相似文献   

19.
Physiological stress responses to capture may be an indicator of welfare challenges induced by animal handling. Simultaneously, blood chemistry changes induced by stress responses may confound experimental design by interacting with the biological parameters being measured. Cortisol elevation is a common indicator of stress responses in mammals and reproductive condition can profoundly influence endocrine response. We measured changes in blood cortisol and testosterone induced by handling reproductively active male Weddell seals (Leptonychotes weddellii) early and late in the breeding season. Weddell seals have the highest resting cortisol levels of all mammals yet showed a clear, prolonged elevation in cortisol in response to capture. Responses were similar when first caught and when caught a second time, later in the breeding season. Baseline testosterone levels declined over the breeding season but were not altered by capture. Administering a light dose of diazepam significantly ameliorated the cortisol response of handled animals without affecting testosterone levels. This may be an effective way of reducing acute capture stress responses. Male breeding success in years males were handled was no different to the years they were not, despite the acute capture response, suggesting no long-term impact of handling on male reproductive output.  相似文献   

20.
Adipose‐derived stromal cells (ADSCs) showed excellent capacity in regeneration and tissue protection. Low tidal volume ventilation (LVT) strategy demonstrates a therapeutic benefit on the treatment of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). This study, therefore, aimed to undertaken determine whether the combined LVT and ADSCs treatment exerts additional protection against lipopolysaccharide (LPS)‐induced ALI in rats. The animals were randomized into seven groups: Group I (control), Group II (instillation of LPS at 10 mg/kg intratracheally), Group III (LPS+LVT 6 ml/kg), Group IV (LPS+intravenous autologous 5 × 106 ADSCs which were pretreated with a scrambled small interfering RNA [siRNA] of keratinocyte growth factor [KGF] negative control), Group V (LPS+ADSCs which were pretreated with a scrambled siRNA of KGF, Group VI (LPS+LVT and ADSCs as in the Group IV), and Group VII (LPS+LVT and ADSCs as in the Group V). We found that levels of tumor necrosis factor‐α, transforming growth factor‐β1, and interleukin (IL)‐1β and IL‐6, the proinflammatory cytokines, were remarkably increased in LPS rats. Moreover, the expressions of ENaC, activity of Na, K‐ATPase, and alveolar fluid clearance (AFC) were obviously reduced by LPS‐induced ALI. The rats treated by ADSCs showed improved effects in all these changes of ALI and further enhanced by ADSCs combined with LVT treatment. Importantly, the treatment of ADSCs with siRNA‐mediated knockdown of KGF partially eliminated the therapeutic effects. In conclusion, combined treatment with ADSCs and LVT not only is superior to either ADSCs or LVT therapy alone in the prevention of ALI. Evidence of the beneficial effect may be partly due to improving AFC by paracrine or systemic production of KGF and anti‐inflammatory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号