首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sarcolipin (SLN), a key regulator of cardiac sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase, is predominantly expressed in atria and mediates β-adrenergic responses. Studies have shown that SLN mRNA expression is decreased in human chronic atrial fibrillation (AF) and in aortic banded mouse atria; however, SLN protein expression in human atrial pathology and its role in atrial SR Ca(2+) uptake are not yet elucidated. In the present study, we determined the expression of major SR Ca(2+) handling proteins in atria of human AF patients and in human and in a mouse model of heart failure (HF). We found that the expression of SR Ca(2+) uptake and Ca(2+) release channel proteins are significantly decreased in atria but not in the ventricles of pressure-overload induced HF in mice. In human AF and HF, the expression of SLN protein was significantly decreased; whereas the expressions of other major SR Ca(2+) handling proteins were not altered. Further, we found that the SR Ca(2+) uptake was significantly increased in human AF. The selective downregulation of SLN and enhanced SR Ca(2+) uptake in human AF suggest that SLN downregulation could play an important role in abnormal intracellular Ca(2+) cycling in atrial pathology.  相似文献   

3.
In an earlier study, we showed that dietary conjugated linoleic acid (CLA) isomers can exert differential effects on heart function in male and female rats, but the underlying mechanisms for these actions are not known. Cardiomyocyte Ca2+ cycling is a key event in normal cardiac contractile function and defects in Ca2+ cycling are associated with cardiac dysfunction and heart disease. We therefore hypothesized that abnormalities in the sarcolemmal (SL) and sarcoplasmic reticulum (SR)-mediated regulation of intracellular Ca2+ contribute to altered cardiac contractile function of male and female rats owing to dietary CLA isomers. Healthy male and female Sprague-Dawley rats were fed different CLA isomers, (cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12)) individually and in combination (50:50 mix as triglyceride or fatty acids) from 4 to 20 weeks of age. We determined the mRNA levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 2a, ryanodine receptor, phospholamban, calsequestrin, Na+-Ca2+-exchanger (NCX), and L-type Ca2+ channel in the left ventricle (LV) by RT-PCR. The SR function was assessed by measurement of Ca2+-uptake and -release. Significant gender differences were seen in the LV NCX, L-type Ca2+ channel, and ryanodine receptor mRNA expression levels in control male and female rats. Dietary CLA isomers in the various forms induced changes in the mRNA levels of SERCA 2a, NCX, and L-type Ca2+ channel in the LV of both male and female hearts. Whereas protein contents of the Ca2+ cycling proteins were altered, changes in SR Ca2+-uptake and -release were also detected in both male and female rats in response to dietary CLA. The results of this study demonstrate that long-term dietary supplementation can modulate cardiac gene expression and SR function in a gender-related manner and may, in part, contribute to altered cardiac contractility.  相似文献   

4.
Calsequestrin (CSQ) is the major Ca2+ binding protein of the cardiac sarcoplasmic reticulum (SR). Transgenic mice overexpressing CSQ at the age of 7 weeks exhibit concentric cardiac hypertrophy, and by 13 weeks the condition progresses to dilated cardiomyopathy. The present study used a differential display analysis to identify genes whose expressions are modulated in the CSQ-overexpressing mouse hearts to provide information on the mechanism of transition from concentric cardiac hypertrophy to failure. Cardiac ankyrin repeat protein (CARP), glutathione peroxidase (Gpx1), and genes which participate in the formation of extracellular matrix including decorin, TSC-36, Magp2, Osf2, and SPARC are upregulated in CSQ mouse hearts at 7 and 13 weeks of age compared to those of non-transgenic littermates. In addition, two novel genes without sequence similarities to any known genes are upregulated in CSQ-overexpressing mouse hearts. Several genes are downregulated at 13 weeks, including SR Ca2+-ATPase (SERCA2) and adenine nucleotide translocase 1 (Ant1) genes. Further, a functionally yet unknown gene (NM_026586) previously identified in the mouse wolffian duct is dramatically downregulated in CSQ mice with dilated hearts. Thus, CARP, Gpx1, and genes encoding extracellular matrix proteins may participate in the development of cardiac hypertrophy and fibrosis, and changes in SERCA2, Ant1, and NM_026586 mRNA expression may be involved in transition from concentric to dilated cardiac hypertrophy.  相似文献   

5.
Sarcoplasmic reticulum (SR)-mediated Ca(2+) sequestration and release are important determinants of cardiac contractility. In end-stage heart failure SR dysfunction has been proposed to contribute to the impaired cardiac performance. In this study we tested the hypothesis that a targeted interference with SR function can be a primary cause of contractile impairment that in turn might alter cardiac gene expression and induce cardiac hypertrophy. To study this we developed a novel animal model in which ryanodine, a substance that alters SR Ca(2+) release, was added to the drinking water of mice. After 1 wk of treatment, in vivo hemodynamic measurements showed a 28% reduction in the maximum speed of contraction (+dP/dt(max)) and a 24% reduction in the maximum speed of relaxation (-dP/dt(max)). The slowing of cardiac relaxation was confirmed in isolated papillary muscles. The late phase of relaxation expressed as the time from 50% to 90% relaxation was prolonged by 22%. After 4 wk of ryanodine administration the animals had developed a significant cardiac hypertrophy that was most prominent in both atria (right atrium +115%, left atrium +100%, right ventricle +23%, and left ventricle +13%). This was accompanied by molecular changes including a threefold increase in atrial natriuretic factor mRNA and a sixfold increase in beta-myosin heavy chain mRNA. Sarcoplasmic endoplasmic reticulum Ca(2+) mRNA was reduced by 18%. These data suggest that selective impairment of SR function in vivo can induce changes in cardiac gene expression and promote cardiac growth.  相似文献   

6.
Oxidative stress plays an important role in mediating ventricular remodeling and dysfunction in heart failure (HF), but its mechanism of action has not been fully elucidated. In this study we determined whether a combination of antioxidant vitamins reduced myocyte apoptosis, beta-adrenergic receptor desensitization, and sarcoplasmic reticular (SR) Ca2+ ATPase downregulation in HF after myocardial infarction (MI) and whether these effects were associated with amelioration of left ventricular (LV) remodeling and dysfunction. Vitamins (vitamin C 300 mg and vitamin E 300 mg) were administered to rabbits 1 week after MI or sham operation for 11 weeks. The results showed that MI rabbits exhibited cardiac dilation and LV dysfunction measured by fractional shortening and the maximal rate of pressure rise (dP/dt), an index of contractility. These changes were associated with elevation of oxidative stress, decreases of mitochondrial Bcl-2 and cytochrome c proteins, increases of cytosolic Bax and cytochrome c proteins, caspase 9 and caspase 3 activities and myocyte apoptosis, and downregulation of beta-adrenergic receptor sensitivity and SR Ca2+ ATPase. Combined treatment with vitamins C and E diminished oxidative stress, increased mitochondrial Bcl-2 protein, decreased cytosolic Bax, prevented cytochrome c release from mitochondria to cytosol, reduced caspase 9 and caspase 3 activities and myocyte apoptosis, blocked beta-adrenergic receptor desensitization and SR Ca2+ ATPase downregulation, and attenuated LV dilation and dysfunction in HF after MI. The results suggest that antioxidant therapy may be beneficial in HF.  相似文献   

7.
Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed that MI induced hypertrophy and dilation, and altered both contraction and relaxation of the left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed relaxation, increased diastolic Ca2+ levels, decreased Ca2+-transient amplitude, and diminished Ca2+ sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac remodeling were decreased when compared to non-treated MI mice. Delapril maintained cardiomyocyte contraction and relaxation, prevented diastolic Ca2+ overload and retained the normal Ca2+ sensitivity of contractile proteins. Delapril maintained SERCA2a activity through normalization of P-PLB/PLB (for both Ser16- PLB and Thr17-PLB) and PLB/SERCA2a ratios in cardiomyocytes, favoring normal reuptake of Ca2+ in the sarcoplasmic reticulum. In addition, delapril prevented defective cTnI function by normalizing the expression of PKC, enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key intracellular mechanisms contributing to preserve cardiac function.  相似文献   

8.
Intracellular Ca2+ regulation is critical in the normal cardiac function and development of pathologic hearts. Phospholamban, an endogenous inhibitor of sarcoplasmic reticulum Ca2+ ATPase in the sarcoplasmic reticulum, plays an important role in Ca2+ cycling in heart. Recently, sarcolipin has been identified as having a similar function as phospholamban in skeletal muscle. Because phospholamban is differentially expressed in atrial and ventricular myocardia and its expression is often altered in diseased hearts, we investigated the cardiac chamber specificity of sarcolipin expression and its regulation during development and hypertrophic remodeling. Northern blot analysis revealed that the expression of mouse sarcolipin mRNA was most abundant in the atria and was undetectable in the ventricles, indicating an atrial chamber-specific expression pattern. Atrial chamber-specific expression of sarcolipin mRNA was increased during development. These findings were confirmed by in situ hybridization studies. In addition, sarcolipin expression was down-regulated in the atria of hypertrophic heart when induced by ventricular specific overexpression of the activated H-ras gene. In humans, sarcolipin mRNA was also expressed in the atria but not detected in the ventricles, although sarcolipin expression was most abundant in skeletal muscle. Taken together, sarcolipin is likely to be an atrial chamber-specific regulator of Ca2+ cycling in heart.  相似文献   

9.
Paraplegia may increase susceptibility to ventricular arrhythmias by altering the autonomic control of the heart. Altered cardiac autonomic control has been documented to change the expression of genes that encode cardiac Ca2+ regulatory proteins. Therefore, we tested the hypothesis that paraplegia alters cardiac electrophysiology with concomitant changes in Ca2+ regulatory proteins in a manner that increases the susceptibility to ventricular arrhythmias. To test this hypothesis, intact (n = 10) and paraplegic (n = 6) male Wistar rats were chronically instrumented to measure atrioventricular (AV) interval, sinus cycle length, sinus node recovery time (SNRT), SNRT corrected for spontaneous sinus cycle (cSNRT), Wenckebach cycle length (WCL), and the electrical stimulation threshold to induce ventricular arrhythmias. In addition, relative protein abundance and mRNA expression for sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA), phospholamban, and the Na/Ca exchanger were determined in intact (n = 8) and paraplegic (n = 8) rats. Paraplegia significantly (P < 0.05) reduced AV interval (-25%), sinus cycle length (-24%), SNRT (-28%), cSNRT (-53%), WCL (-19%), and the electrical stimulation threshold to induce ventricular arrhythmia (-48%). Paraplegia significantly increased the relative protein abundances of SERCA (45%) and the Na/Ca exchanger (40%) and decreased phospholamban levels (-28%). In contrast, only the relative mRNA expression of the Na/Ca exchanger was increased (25%) in paraplegic rats. These data demonstrate that paraplegia enhances cardiac electrophysiological properties and alters Ca2+ regulatory proteins in a manner that increases susceptibility to ventricular arrhythmias.  相似文献   

10.
Sarcolipin (SLN), a key regulator of cardiac sarco(endo)plasmic reticulum (SR) Ca2+ ATPase, is predominantly expressed in atria and mediates β-adrenergic responses. Studies have shown that SLN mRNA expression is decreased in human chronic atrial fibrillation (AF) and in aortic banded mouse atria; however, SLN protein expression in human atrial pathology and its role in atrial SR Ca2+ uptake are not yet elucidated. In the present study, we determined the expression of major SR Ca2+ handling proteins in atria of human AF patients and in human and in a mouse model of heart failure (HF). We found that the expression of SR Ca2+ uptake and Ca2+ release channel proteins are significantly decreased in atria but not in the ventricles of pressure-overload induced HF in mice. In human AF and HF, the expression of SLN protein was significantly decreased; whereas the expressions of other major SR Ca2+ handling proteins were not altered. Further, we found that the SR Ca2+ uptake was significantly increased in human AF. The selective downregulation of SLN and enhanced SR Ca2+ uptake in human AF suggest that SLN downregulation could play an important role in abnormal intracellular Ca2+ cycling in atrial pathology.  相似文献   

11.
Regulation of cellular Ca(2+) cycling is central to myocardial contractile function. Loss of Ca(2+) regulation is associated with cardiac dysfunction and pathology. Estrogen has been shown to modify contractile function and to confer cardioprotection. Therefore, we investigated the effect of estrogen on expression of rat heart myocardial Ca(2+)-handling proteins and beta-adrenergic receptor (beta(1)-AR) and examined functional correlates. Female rats were sham-operated (SHAM) or ovariectomized. Two weeks after ovariectomy rats were injected (i.p.) daily with estradiol benozoate (OVX+EB) or sesame oil (OVX) for 2 weeks. Protein abundance was measured by immunoblotting and mRNA was quantified by real-time RT-PCR. OVX significantly decreased estrogen and progesterone levels and EB replacement returned both estrogen and progesterone to physiological levels. OVX induced a 75% reduction of uterine weight and a gain in body weight. Replacement restored weights to SHAM level. OVX increased and estrogen-replacement normalized abundance of beta(1)-AR and L-type Ca(2+) channel (Cav1.2) protein. OVX decreased sodium-Ca(2+) exchange protein (NCX) and estrogen restored protein abundance to SHAM levels. Sarcoplasmic reticular ATPase (SERCA), phospholamban (PLB), and ryanodine receptor (RyR) abundance was not altered by hormone status. Levels of mRNA encoding for beta(1)-AR, Cav1.2, and NCX were not influenced by OVX or estrogen replacement. OVX had no effect on SERCA and PLB mRNA level but estrogen replacement elicited a significant increase compared to OVX and SHAM. Estrogen-dependent changes in Ca(2+)-handling proteins and beta(1)-AR are theoretically consistent reduced myocellular Ca(2+) load. However, hormone-dependent alterations in protein were not associated with changes in contractile function.  相似文献   

12.
13.
14.
15.
The cytosolic free Ca2+ concentration ([Ca2+]i) was monitored in quiescent atrial and ventricular myocytes isolated from guinea-pig hearts by the fura-2 fluorescence ratio technique. Recombinant human atrial natriuretic peptide (ANP) was found to reduce their basal [Ca2+]i level in a dose-dependent manner. Dibutyryl-cGMP mimicked the effect of ANP. Neither the prior application of caffeine nor removal of extracellular Na+ impaired the ANP effect. ANP had no inhibitory effect on voltage-gated Ca2+ currents measured by a whole-cell patch clamp technique. The ANP-induced [Ca2+]i decrease was abolished by orthovanadate. Thus, it is concluded that ANP reduces the basal [Ca2+]i presumably through the cGMP-mediated activation of the plasma membrane Ca2(+)-pump in cardiac myocytes.  相似文献   

16.
A novel flagellar Ca2+-binding protein in trypanosomes   总被引:6,自引:0,他引:6  
A 24-kDa protein of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, is recognized by antisera from both humans and experimental animals infected with this organism. Near its C terminus are two regions that have sequence similarity with several Ca2+-binding proteins and that conform to the "E-F hand" Ca2+-binding structure. We expressed a cDNA encoding this protein in Escherichia coli and showed that both the recombinant protein and the 24-kDa native trypanosome protein do indeed bind Ca2+. The protein's low Ca2+-binding capacity (less than 2 mol of Ca2+/mol of protein) and high Ca2+-binding affinity (apparent Kd less than 50 microM Ca2+) are consistent with binding of Ca2+ via the E-F hand structures. Immunofluorescence assays using a mouse antiserum directed against the fusion protein localized the native protein to the trypanosome's flagellum. The protein's abundance, Ca2+-binding property, and flagellar localization suggest that it participates in molecular processes associated with the high motility of the parasite.  相似文献   

17.
Diastolic heart failure (DHF), characterized by depressed myocardial relaxation performance and poor ventricular filling, is a distinct form of heart failure accounting for nearly half of the heart failure patients with otherwise normal systolic performance. Defective intracellular calcium (Ca2+) cycling is an important mechanism underlying impaired relaxation in DHF. Recently, genetic manipulation of Ca2+ handling proteins in cardiac myocytes has been explored for its potential therapeutic application in DHF. Specifically, ectopic expression of the skeletal muscle Ca2+ binding protein parvalbumin (Parv) has been shown to accelerate myocardial relaxation in vitro and in vivo. Parv acts as a unique "delayed" Ca2+ buffer during diastole by promoting Ca2+ transient decay and sequestration and corrects diastolic dysfunction in an energy-independent manner. This brief review summarizes the rationale and development of Parv gene transfer approaches for DHF, and in particular, discusses the divergent effects of Parv isoforms on cardiac myocyte Ca2+ handling and contractile function with the long-range goal of alleviating diastolic dysfunction in DHF.  相似文献   

18.
19.
The present study was designed to explore the role of the Na+/Ca2+ exchanger on spontaneous beating of cultured cardiac myocytes. Antisense oligonucleotides (AS) based on the sequence of the cardiac Na+/Ca2+ exchanger were used to decrease expression of this Ca2+ transporting protein in cardiac myocytes. An application of AS (10 microM) caused an increase in beating rate of myocytes within 6-24 h. After 24 h of exposure, AS increased the beating rate from an average rate of 77 beats/min in control and sense-treated myocytes to 103 beats/min. Moreover, myocytes treated for 24 h with 10 microM AS exhibited an increase in diastolic [Ca2+]i levels. The antisense treatment also led to a approximately 20% decrease in expression of Na+/Ca2+ exchanger proteins within 6-24 h. Changes in mRNA levels following AS treatment could not be detected within 3- to 24-h periods. The results of these studies suggest that the Na+/Ca2+ exchanger plays a potentiating role in spontaneous the beating process by regulating [Ca2+]i dynamics and that even a small reduction in the levels of the exchanger protein has marked effects on the handling of [Ca2+]i during the cardiac cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号