首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently reported that coronary endothelial cell (CEC) dysfunction may contribute to the development of right ventricular (RV) hypertrophy (RVH) in monocrotaline (MCT)-induced pulmonary hypertensive rats. This present study investigated whether preservation of CEC function with garlic and its active metabolite allicin could abrogate RVH. Rats were fed with 1% raw garlic (RG)-supplemented diet 1 day or 3 wk before and 1 day after MCT injection, and changes in RV pressure (RVP), RVH, and CEC function were assessed 3 wk after MCT administration. In all cases, RG feeding significantly inhibited the development of RVP and RVH in these MCT rats. However, similar treatments with either boiled garlic (BG) or aged garlic (AG), which do not contain the active allicin metabolite, were ineffective. CEC function, assessed with acetylcholine-induced dilation as well as N(omega)-nitro-l-arginine methyl ester-induced constriction, revealed marked attenuation in right, but not left, coronary arteries of the MCT rats. This is consistent with our earlier report. Feeding of RG, but not BG or AG, preserved the CEC function and prevented the exaggerated vasoconstrictory responses of the MCT coronary arteries. There was no change in the coronary dilatory responses to a nitric oxide donor sodium nitroprusside. Further testings of vasoactivity to garlic extracts showed that only RG, but not BG or AG, elicited a potent, dose-dependent dilation on the isolated coronaries. Taken together, these findings show that the protective effect of garlic against the development of RVP and RVH in MCT-treated rats is probably mediated via its active metabolite allicin action on coronary endothelial function and vasoreactivity.  相似文献   

2.
Given the therapeutic efficacy of fasudil hydrochloride (F) and dichloroacetate (DCA) on pulmonary arterial hypertension (PAH), a new salt fasudil dichloroacetate (FDCA) was designed, synthesized and biologically evaluated. FDCA exhibited comparable ROCK II inhibitory activity relative to fasudil hydrochloride, and suppressed the expression of TNF-α and IL-6 in both PDGF-BB and hypoxia-treated pulmonary arterial smooth muscle cells (PASMCs) and endothelial cells (PAECs). Significantly, FDCA lowered mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), and decreased right ventricular hypertrophy (RVH) in monocrotaline (MCT)-induced PAH rats. Meanwhile, FDCA remarkably decreased pulmonary artery medial thickness (PAMT) and hyperplasia, restoring the elasticity of elastic fiber, reduced cardiac hypertrophy, and attenuated fibrosis of heart and lung. Collectively, FDCA exhibited triple activities of pulmonary vasodilation, vascular remodeling inhibition and RVH inhibition, suggesting that it may be a promising agent for PAH intervention.  相似文献   

3.
Insulin resistance (IR) impairs vascular responses in coronary arteries, but mechanisms of dysfunction and approaches to treatment remain unclear. We examined the ability of a new 3-hydroxy-methylglutaryl coenzyme A reductase inhibitor, rosuvastatin, to reverse reduced dilator responses in rats made IR by feeding a fructose-rich diet (FF). Sprague-Dawley rats were randomized to control (normal rat diet) or FF. After 1 wk, rats received rosuvastatin (2 mg/kg) or placebo (saline) subcutaneously for 5 wk. Biochemical measurements and in vitro functional studies of small coronary arteries were performed. Fasting insulin and triglyceride (TG) levels were markedly increased in FF-placebo rats compared with other groups. Rosuvastatin treatment of FF rats normalized TG and modestly decreased insulin levels. ACh-induced dilator responses were depressed in arteries from FF-placebo rats. This impairment was due to decreased responses via calcium-dependent K channels (K(Ca)). Rosuvastatin treatment of FF rats completely reversed the response to ACh to normal levels. Moreover, this recovery in function was due to an improvement in vasodilation via K(Ca). Thus rosuvastatin treatment of IR rats normalizes coronary vascular dilator responses by improving the K(Ca) function.  相似文献   

4.
We investigated a causal role for coronary endothelial dysfunction in development of monocrotaline (MCT)-induced pulmonary hypertension and right heart hypertrophy in rats. Significant increases in pulmonary pressure and right ventricular weight did not occur until 3 wk after 60 mg/kg MCT injection (34 +/- 4 vs. 19 +/- 2 mmHg and 37 +/- 2 vs. 25 +/- 1% septum + left ventricular weight in controls, respectively). Isolated right coronary arteries (RCA) showed significant decreases in acetylcholine-induced NO dilation in both 1-wk (33 +/- 3% with 0.3 microM; n = 5) and 3-wk (18 +/- 3%; n = 11) MCT rats compared with control rats (71 +/- 8%, n = 10). Septal coronary arteries (SCA) showed a smaller decrease in acetylcholine dilation (55 +/- 8% and 33 +/- 7%, respectively, vs. 73 +/- 8% in controls). No significant change was found in the left coronary arteries (LCA; 88 +/- 6% and 81 +/- 6%, respectively, vs. 87 +/- 3% in controls). Nitro-L-arginine methyl ester-induced vasoconstriction, an estimate of spontaneous endothelial NO-mediated dilation, was not significantly altered in MCT-treated SCA or LCA but was increased in RCA after 1 wk of MCT (-41 +/- 6%) and decreased after 3 wk (-18 +/- 3% vs. -27 +/- 3% in controls). A marked enhancement to 30 nM U-46619-induced constriction was also noted in RCA of 3-wk (-28 +/- 6% vs. -9 +/- 2% in controls) but not 1-wk (-12 +/- 7%) MCT rats. Sodium nitroprusside-induced vasodilation was not different between control and MCT rats. Together, our findings show that a selective impairment of right, but not left, coronary endothelial function is associated with and precedes development of MCT-induced pulmonary hypertension and right heart hypertrophy in rats.  相似文献   

5.
Pulmonary hypertension (PH) is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH) and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4) is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT)-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.  相似文献   

6.
Rats with established monocrotaline (MCT)-induced pulmonary hypertension also exhibit a profound increase in lung resistance (RL) and a decrease in lung compliance. Because airway/lung dysfunction could precede and influence the evolution of MCT-induced pulmonary vascular disease, it is important to establish the temporal relationship between development of pulmonary hypertension and altered ventilatory function in MCT-treated rats. To resolve this issue, we segregated 47 young Sprague-Dawley rats into four groups: control (n = 13), MCT1 (n = 9), MCT2 (n = 11), and MCT3 (n = 14). Each MCT rat received a single subcutaneous injection of MCT (60 mg/kg) 1 MCT1), 2 (MCT2), or 3 (MCT3) wk before the functional study. At 1 wk after MCT, significant increases in RL and alveolar wall thickness were observed, as was a significant decrease in carbon monoxide diffusing capacity (DLCO). Medial thickness of pulmonary arteries (50-100 microns OD) and right ventricular hypertrophy were not observed until 2 and 3 wk post-MCT, respectively. Coincident with the right ventricular hypertrophy at 3 wk post-MCT were decreased DLCO and increased alveolar wall thickness and lung dry weight. Pressure-volume curves of air-filled and saline-filled lungs showed marked rightward shifts during the 1st and 2nd wk after MCT administration and then decreased at the 3rd wk. These data suggest that MCT-induced alterations in airway/lung function preceded those of pulmonary vasculature and, therefore, implicate airway/lung dysfunctions as potentially contributing to the later development of pulmonary vascular abnormalities.  相似文献   

7.
HMG-CoA-reductase inhibitors (statins) influence lipid metabolism and have pleiotropic effects. Several statins reduce various forms of pulmonary hypertension (PH) in animal models. The relationship between atorvastatin and expression of serotonin transporter protein (5-HTT) remains unknown. This study focused on the effects of atorvastatin on the course of monocrotaline (MCT)-induced PH and its relation to 5-HTT expression. Male Sprague-Dawley rats were challenged with MCT with or without subsequent daily oral treatment with 0.1, 1, and 10 mg/kg of atorvastatin for 28 days. Over the 4-wk course, the progression of PH was followed by transthoracic echocardiography [pulmonary artery pressure was assessed by pulmonary artery flow acceleration time (PAAT), an estimate reciprocal to pulmonary artery pressure], and, at the end of the 4-wk course, invasive right ventricular pressure, right ventricular weight, quantitative morphology, and 5-HTT expression were measured. MCT caused significant PH as early as 7 days after injection. Atorvastatin treatment increased PAAT and reduced right ventricular pressure, right ventricular hypertrophy, and vascular remodeling over the 4-wk course. MCT challenge was associated with increased pulmonary vascular 5-HTT expression, and atorvastatin treatment reduced the 5-HTT expression. MCT-induced PH over the course of 4 wk can be easily followed by transthoracic echocardiography, and atorvastatin is effective in reducing the PH. Atorvastatin's effects are associated with a decrease of 5-HTT expression.  相似文献   

8.
Remodeling of right coronary artery (RCA) occurs during right ventricular hypertrophy (RVH) induced by banding of the pulmonary artery (PA). The effect of RVH on RCA endothelial function and reactive oxygen species (ROS) in vessel wall remains unclear. A swine RVH model (n = 12 pigs) induced by PA banding was used to study RCA endothelial function and ROS level. To obtain longitudinal coronary hemodynamic and geometric data, digital subtraction angiography was used during the progression of RVH. Blood flow in the RCA increased by 82% and lumen diameter of RCA increased by 22% over a 4-wk period of RVH. The increase in blood flow and the commensurate increase in diameter resulted in a constant wall shear stress in RCA throughout the RVH period. ROS was elevated by ~100% in RCA after 4 wk of PA banding. The expressions of p47(phox), NADPH oxidase (NOX1, NOX2, and NOX4) were upregulated in the range of 20-300% in RCA of RVH. The endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In vivo angiographic analysis suggests an increased basal tone in the RCA during RVH. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone.  相似文献   

9.
Lung platelet-activating factor (PAF) levels increased in some rats at 1-3 wk after subcutaneous injection of monocrotaline (MCT). We tested the effect of specific PAF antagonists, WEB 2086 and WEB 2170, on MCT-induced lung injury and subsequent pulmonary hypertension and right ventricular hypertrophy. Treatment with either agent decreased MCT-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk after injection. Treatment with WEB 2170 reduced MCT-induced pulmonary vascular leak at 1 wk after injection, and WEB 2086-treatment exclusively during the early leak phase also decreased MCT-induced right ventricular hypertrophy at 3 wk. Treatment with WEB 2170 between the 3rd and 4th wk after MCT injection inhibited the progression of right ventricular hypertrophy at 4 wk. These results suggest that PAF contributes to the early pulmonary vascular leak, and this leak phase is important for the development of pulmonary hypertension and right ventricular hypertrophy in MCT-treated rats. Furthermore, it appears that PAF action contributes to the maintenance of a chronic inflammatory process that involves the synthesis of other lipid mediators (prostaglandins and leukotrienes) and leads to pulmonary hypertension. We conclude that PAF has a role in the MCT-induced inflammatory lung injury and pulmonary hypertension.  相似文献   

10.
Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by vascular remodeling, endothelial cell (EC) dysfunction, and inflammation. The roles of microRNAs have received much critical attention. Thus, this study was attempted to show the biological function of miR-181a/b-5p (miR-181a/b) in monocrotaline (MCT)-induced PAH. Here, rats injected with MCT were used as PAH models. The expression of miR-181a/b and its effect on PAH pathologies were examined using miR-181a/b overexpression lentivirus. A luciferase reporter analysis was performed to measure the relationships between miR-181a/b and endocan. Additionally, primary rat pulmonary arterial endothelial cells (rPAECs) treated with tumor necrosis factor-α (TNF-α) were employed to further validate the regulatory mechanism of miR-181a/b in vitro. Our results showed that miR-181a/b expression was reduced in PAH, and its upregulation significantly attenuated the short survival period, right ventricular systolic pressure and mean pulmonary artery pressure increments, right ventricular remodeling, and lung injury. Furthermore, the increase of intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) in PAH rats was inhibited by miR-181a/b overexpression. Similarly, our in vitro results showed that inducing miR-181a/b suppressed TNF-α-stimulated increase of ICAM1 and VCAM1 in rPAECs. Importantly, the increased expression of endocan in PAH model or TNF-α-treated rPAECs was restored by miR-181a/b upregulation. Further analysis validated the direct targeting relationships between miR-181a/b and endocan. Collectively, this study suggests that miR-181a/b targets endocan to ameliorate PAH symptoms by inhibiting inflammatory states, shedding new lights on the prevention and treatment of PAH.  相似文献   

11.
Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.  相似文献   

12.

Aims

Our previous study has indicated that activation of PPAR-γ inhibits the proliferation of rat pulmonary artery smooth muscle cells (PASMCs) in vitro through inducing the expression of heme oxygenase-1 (HO-1), which in turn up-regulates the p21WAF1 expression. In the present study, we intended to determine whether similar mechanisms have been involved in activation of PPAR-γ inhibition of development of rat PAH model.

Material and methods

Rat pulmonary arterial hypertension (PAH) model was established by subcutaneous injection of monocrotaline (MCT). Rosiglitazone was administered to activate PPAR-γ. Zinc protoporphyria IX (ZnPP-IX), was used to confirm the role of HO-1 in mediating PPAR-γ function. Parameters including the right ventricle systolic pressure (RVSP), the right ventricular hypertrophy (RVH) and the percentage of medial wall thickness were used to evaluate the development of PAH. Immunoblotting was used to determine the expression of HO-1 and p21WAF1.

Key findings

Rosiglitazone significantly decreased the RVSP and inhibited the RVH in MCT-induced rat PAH model, and partially inhibited the pulmonary vascular remodeling. These effects were coupled with the sequential increase of HO-1 and p21WAF1 expressions by rosiglitazone.

Significance

Activation of PPAR-γ benefits PAH by inhibiting proliferation of PASMCs and reducing pulmonary vascular remodeling. The present study suggests that enhancing PPAR-γ activity might have potential value in clinical treatment of PAH.  相似文献   

13.
Mutations in bone morphogenetic protein (BMP) receptor II (BMPR2) are associated with the apoptosis of the pulmonary artery endothelial cells and the loss of the pulmonary small vessels. The present study was designed to investigate the involvement of BMPR2 in the protective effect of fluoxetine against monocrotaline (MCT)-induced endothelial apoptosis in rats. Models of pulmonary arterial hypertension in rats were established by a single intraperitoneal injection of MCT (60 mg/kg). Fluoxetine (2 and 10 mg/kg) was intragastrically administered once a day. After 21 days, MCT caused pulmonary hypertension, right ventricular hypertrophy, and pulmonary vascular remodeling and significantly reduced the BMPR2 expression in lungs and pulmonary arteries. Fluoxetine dose-dependently inhibited MCT-induced pulmonary arterial hypertension and effectively protected the lungs against MCT-induced endothelial apoptosis, reduction in the number of alveolar sacs, and loss of the pulmonary small vessels. Fluoxetine reversed the expression of cyclic guanosine 3',5'-monophosphate-dependent kinase ?, BMPR2, phospho-Smad1, β-catenin, and reduced the expression of caspase 3 in rat lungs. These findings suggest that BMPR2 is probably involved in the protective effect of fluoxetine against MCT-induced endothelial apoptosis in rats.  相似文献   

14.
Pulmonary hypertension (PH) is associated with profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Previous studies show that canonical transient receptor potential (TRPC) genes are upregulated and store-operated Ca(2+) entry (SOCE) is augmented in PASMCs of chronic hypoxic rats and patients of pulmonary arterial hypertension (PAH). Here we further examine the involvement of TRPC and SOCE in PH with a widely used rat model of monocrotaline (MCT)-induced PAH. Rats developed severe PAH, right ventricular hypertrophy, and significant increase in store-operated TRPC1 and TRPC4 mRNA and protein in endothelium-denuded pulmonary arteries (PAs) 3 wk after MCT injection. Contraction of PA and Ca(2+) influx in PASMC evoked by store depletion using cyclopiazonic acid (CPA) were enhanced dramatically, consistent with augmented SOCE in the MCT-treated group. The time course of increase in CPA-induced contraction corresponded to that of TRPC1 expression. Endothelin-1 (ET-1)-induced vasoconstriction was also potentiated in PAs of MCT-treated rats. The response was partially inhibited by SOCE blockers, including Gd(3+), La(3+), and SKF-96365, as well as the general TRPC inhibitor BTP-2, suggesting that TRPC-dependent SOCE was involved. Moreover, the ET-1-induced contraction and Ca(2+) response in the MCT group were more susceptible to the inhibition caused by the various SOCE blockers. Hence, our study shows that MCT-induced PAH is associated with increased TRPC expression and SOCE, which are involved in the enhanced vascular reactivity to ET-1, and support the hypothesis that TRPC-dependent SOCE is an important pathway for the development of PH.  相似文献   

15.

Rationale

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. However, the molecular and cellular mechanisms driving inflammation have not been fully elucidated.

Objectives

To elucidate the roles of high mobility group box 1 protein (HMGB1), a ubiquitous DNA-binding protein with extracellular pro-inflammatory activity, in a rat model of PAH.

Methods

Male Sprague-Dawley rats were administered monocrotaline (MCT). Concentrations of HMGB1 in bronchoalveolar lavage fluid (BALF) and serum, and localization of HMGB1 in the lung were examined over time. The protective effects of anti-HMGB1 neutralizing antibody against MCT-induced PAH were tested.

Results

HMGB1 levels in BALF were elevated 1 week after MCT injection, and this elevation preceded increases of other pro-inflammatory cytokines, such as TNF-α, and the development of PAH. In contrast, serum HMGB1 levels were elevated 4 weeks after MCT injection, at which time the rats began to die. Immunohistochemical analyses indicated that HMGB1 was translocated to the extranuclear space in periarterial infiltrating cells, alveolar macrophages, and bronchial epithelial cells of MCT-injected rats. Anti-HMGB1 neutralizing antibody protected rats against MCT-induced lung inflammation, thickening of the pulmonary artery wall, and elevation of right ventricular systolic pressure, and significantly improved the survival of the MCT-induced PAH rats.

Conclusions

Our results identify extracellular HMGB1 as a promoting factor for MCT-induced PAH. The blockade of HMGB1 activity improved survival of MCT-induced PAH rats, and thus might be a promising therapy for the treatment of PAH.  相似文献   

16.

Background

The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function.

Methods

Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis.

Results

The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001).

Conclusions

Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH.  相似文献   

17.
Pulmonary arterial hypertension (PAH) is characterized by increasing pulmonary pressure, right ventricular failure, and death. The typical pathological changes include medial hypertrophy, intimal fibrosis and in situ thrombosis. Serotonin (5-HT) and other factors contribute to the development of pathologic lesions. Aspirin (ASA), a platelet aggregation inhibitor, inhibits 5-HT release from platelets. The aim of this study was to determine the efficacy of ASA in preventing or attenuating PAH. Sprague–Dawley rats injected with monocrotaline (MCT) developed severe PAH within 31 days. One hundred forty rats were randomized to receive either vehicle or ASA (0.5, 1, 2, or 4 mg/kg/day). The pre-ASA group was treated with ASA (1 mg/kg/day) for 30 days before the MCT injection. Thirty-one days after the injection (day 61 for the pre-ASA group), pulmonary arterial pressure (PAP), right ventricular hypertrophy and pulmonary arteriole thickness were measured. Plasma 5-HT was measured by high-performance liquid chromatography. Aspirin suppressed PAH and increased the survival rate compared with the control group (84 vs. 60%, P < 0.05). Aspirin treatment also reduced right ventricular hypertrophy and pulmonary arteriole proliferation in ASA-treated PAH model. In addition, plasma 5-HT was decreased in our ASA-treated PAH model. The degree of 5-HT reduction was associated with systolic PAP, right ventricular hypertrophy and wall thickness of pulmonary arterioles in rats. These results showed that ASA treatment effectively attenuated MCT-induced pulmonary hypertension, right ventricular hypertrophy, and occlusion of the pulmonary arteries. The effects of ASA was associated with a reduction of 5-HT.  相似文献   

18.
Monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) in rats is preceded by an inflammatory response, progressive endothelial cell membrane disruption, reduction in the expression of caveolin-1, and reciprocal activation of STAT3 (PY-STAT3). Superoxide and NF-kappaB have been implicated in PAH. To evaluate the role of caveolin-1, PY-STAT3 activation, and superoxide in PAH, MCT-injected rats were treated daily with pyrrolidine dithiocarbamate (PDTC; starting on days 1, 3, and 14 x 2 wk), an inhibitor of inflammation and NF-kappaB activation. Hemodynamic data, the expression of inhibitory (I)-kappaBalpha, caveolin-1, and Tie2 (a membrane protein), activation of PY-STAT3 and NF-kappaB, and superoxide chemiluminescence were examined. Rats developed progressive PAH at 2 wk post-MCT. There was progressive reduction in the expression of caveolin-1, Tie2, and activation of PY-STAT3 in the lungs. Reduction in I-kappaBalpha expression was present at 2 and 4 wk post-MCT. Superoxide chemiluminescence and NF-kappaB activation were observed only at 2 wk post-MCT and both decreased by 4 wk post-MCT despite progressive PAH. PDTC (starting on days 1 and 3) rescued caveolin-1 and Tie2, reversed MCT-induced PY-STAT3 activation, and attenuated PAH. In addition, PDTC restored I-kappaBalpha expression and reduced superoxide chemiluminescence at 2 wk but did not inhibit NF-kappaB activation despite attenuation of PAH. PDTC had no effect on established PAH. Increased superoxide chemiluminescence and NF-kappaB activation appear to be a transient phenomenon in the MCT model. Thus the disruption of endothelial cell membrane integrity resulting in caveolin-1 loss and reciprocal activation of PY-STAT3 plays a key role in the MCT-induced PAH.  相似文献   

19.
Pulmonary arterial hypertension (PAH) is characterized by excessive pulmonary artery smooth muscle cell proliferation and impaired apoptosis leading to obstruction of resistance pulmonary arteries. We hypothesized that antiproliferative (rapamycin) and proapoptotic (statins) agents, already used clinically for other indications, would decrease experimental PAH, facilitating translation to human therapies. Prior studies in the rat monocrotaline-PAH model have indicated that simvastatin regresses and rapamycin prevents, but cannot reverse, PAH. Two PAH regression strategies (rapamycin monotherapy vs. rapamycin + atorvastatin) and one prevention strategy (simvastatin) were tested in a rat monocrotaline-PAH model. Adult male Sprague-Dawley rats were randomized to saline (n = 6) or monocrotaline (60 mg/kg ip, n = 36) treatment groups. Monocrotaline rats were randomized to gavage with vehicle, rapamycin (2.5 mgxkg(-1)xday(-1)), or rapamycin + atorvastatin (10 mgxkg(-1)xday(-1)) treatment groups, beginning 12 days post-monocrotaline. Echocardiographic and hemodynamic end points were assessed 2 wk later. Additional monocrotaline-PAH rats (n = 20) were randomized to vehicle or simvastatin (2 mgxkg(-1)xday(-1)) treatment groups and followed echocardiographically for 4 wk. Monocrotaline-PAH increased lung p70 S6 kinase phosphorylation, and this was reversed by rapamycin, confirming the biological activity of rapamycin. Despite the use of high doses, neither rapamcyin nor rapamycin + atorvastatin improved survival nor reduced PAH, vascular remodeling, and right ventricular hypertrophy. Although prophylactic simvastatin slowed PAH progression, by 4 wk PAH severity and mortality were not different from placebo. Apart from the new finding of p70 S6 kinase phosphorylation in monocrotaline-PAH, this is a negative therapeutic trial (none of these promising therapies improved monocrotaline-PAH). These negative results should be considered as human trials with these agents are underway (simvastatin) or proposed (rapamycin).  相似文献   

20.
Decreased right as well as left ventricular function can be associated with pulmonary hypertension (PH). Numerous investigations have examined cardiac function following induction of pulmonary hypertension with monocrotaline (MCT) assuming that MCT has no direct cardiac effect. We tested this assumption by examining left ventricular function and histology of isolated and perfused hearts from MCT-treated rats. Experiments were performed on 50 male Sprague-Dawley rats [348 +/- 6 g (SD)]. Thirty-seven rats received MCT (50 mg/kg sc; MCT group) while the remainder did not (Control group). Three weeks later, pulmonary artery pressure was assessed echocardiographically in 20 MCT and 8 Control rats. The hearts were then excised and perfused in the constant pressure Langendorff mode to determine peak left ventricular pressure (LVP), the peak instantaneous rate of pressure increase (+dP/dtmax) and decrease (-dP/dtmax), as well as the rate pressure product (RPP). Histological sections were subsequently examined. Pulmonary artery pressure was higher in the MCT-treated group compared with the Control group [12.9 +/- 6 vs. 51 +/- 35.3 mmHg (P < 0.01)]. Left ventricular systolic function and diastolic relaxation were decreased in the MCT group compared with the Control group (+dP/dtmax 4,178 +/- 388 vs. 2,801 +/- 503 mmHg/s, LVP 115 +/- 11 vs. 83 +/- 14 mmHg, RPP 33,688 +/- 1,910 vs. 23,541 +/- 3,858 beats x min(-1) x mmHg(-1), -dP/dtmax -3,036 +/- 247 vs. -2,091 +/- 389 mmHg/s; P < 0.0001). The impairment of cardiac function was associated with myocarditis and coronary arteriolar medial thickening. Similarly depressed ventricular function and inflammatory infiltration was seen in 12 rats 7 days after MCT administration. Our findings appear unrelated to the degree of PH and indicate a direct cardiotoxic effect of MCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号