首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The focal source hypothesis of ventricular fibrillation (VF) posits that rapid activation from a focal source, rather than action potential duration (APD) restitution properties, is responsible for the maintenance of VF. We injected aconitine (100 microg) into normal isolated perfused swine right ventricles (RVs) stained with 4-[beta-[2-(di-n-butylamino)-6-naphthyl]vinyl]pyridinium (di-4-ANEPPS) for optical mapping studies. Within 97 +/- 163 s, aconitine induced ventricular tachycardia (VT) with a mean cycle length 268 +/- 37 ms, which accelerated before converting to VF. Drugs that flatten the APD restitution slope, including diacetyl monoxime (10-20 mM, n = 6), bretylium (10-20 microg/ml, n = 3), and verapamil (2-4 microg/ml, n = 3), reversibly converted VF to VT in all cases. In two RVs, VF persisted despite of the excision of the aconitine site. Simulations in two-dimensional cardiac tissue showed that once VF was initiated, it remained sustained even after the "aconitine" site was eliminated. In this model of focal source VF, the VT-to-VF transition occurred due to a wave break outside the aconitine site, and drugs that flattened the APD restitution slope converted VF to VT despite continuous activation from aconitine site.  相似文献   

3.
Art Winfree's scientific legacy has been particularly important to our laboratory whose major goal is to understand the mechanisms of ventricular fibrillation (VF). Here, we take an integrative approach to review recent studies on the manner in which nonlinear electrical waves organize to result in VF. We describe the contribution of specific potassium channel proteins and of the myocardial fiber structure to such organization. The discussion centers on data derived from a model of stable VF in the Langendorff-perfused guinea pig heart that demonstrates distinct patterns of organization in the left (LV) and right (RV) ventricles. Analysis of optical mapping data reveals that VF excitation frequencies are distributed throughout the ventricles in clearly demarcated domains. The highest frequency domains are found on the anterior wall of the LV at a location where sustained reentrant activity is present. The optical data suggest that a high frequency rotor that remains stationary in the LV is the mechanism that sustains VF in this model. Computer simulations predict that the inward rectifying potassium current (IK1) is an essential determinant of rotor stability and frequency, and patch-clamp results strongly suggest that the outward component of IK1 of cells in the LV is significantly larger than in the RV. Additional computer simulations and analytical procedures predict that the filaments of the reentrant activity (scroll waves) adopt a non-random configuration depending on fiber organization within the ventricular wall. Using the minimal principle we have concluded that filaments align with the trajectory of least resistance (i.e. the geodesic) between their endpoints. Overall, the data discussed have opened new and potentially exciting avenues of research on the possible role played by inward rectifier channels in the mechanism of VF, as well as the organization of its reentrant sources in three-dimensional cardiac muscle. Such an integrative approach may lead us toward an understanding of the molecular and structural basis of VF and hopefully to new preventative approaches.  相似文献   

4.
Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF), which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements.  相似文献   

5.
Whether or not the excitation-contraction (E-C) uncoupler diacetyl monoxime (DAM) and cytochalacin D (Cyto D) alter the ventricular fibrillation (VF) activation patterns is unclear. We recorded single cell action potentials and performed optical mapping in isolated perfused swine right ventricles (RV) at different concentrations of DAM and Cyto D. Increasing the concentration of DAM results in progressively shortened action potential duration (APD) measured to 90% repolarization, reduced the slope of the APD restitition curve, decreased Kolmogorov-Sinai entropy, and reduced the number of VF wave fronts. In all RVs, 15-20 mmol/l DAM converted VF to ventricular tachycardia (VT). The VF could be reinduced after the DAM was washed out. In comparison, Cyto D (10-40 micromol/l) has no effects on APD restitution curve or the dynamics of VF. The effects of DAM on VF are associated with a reduced number of wave fronts and dynamic complexities in VF. These results are compatible with the restitution hypothesis of VF and suggest that DAM may be unsuitable as an E-C uncoupler for optical mapping studies of VF in the swine RVs.  相似文献   

6.
We tested the hypothesis that sildenafil, singly or in combination with nitric oxide (NO) donors, promotes ventricular tachycardia (VT) and ventricular fibrillation (VF). Vulnerability to VT/VF was tested by rapid pacing in eight isolated normal swine right ventricles (RV). The endocardial activation was optically mapped, and the dynamic action potential duration (APD) restitution curves were constructed with metal microelectrodes. At baseline, no VT/VF could be induced. Sildenafil (0.2 microg/ml) or NO donor singly or in combination did not alter VT/VF vulnerability. However, when 2 microg/ml sildenafil was combined with NO donors, the incidence of VT and VF rose significantly (P < 0.01). VT with a single periodic wavefront was induced in five of eight RVs, and VF with multiple wavefronts was induced in all eight RVs. The sildenafil-NO donor pro-VT/VF combination significantly increased the maximum slope of the APD restitution curve and the amplitude of the APD alternans. The pro-VT/VF effects of sildenafil were reversible after drug-free Tyrode solution perfusion. We conclude that a sildenafil (2 microg/ml) and NO donor combination increases VT/VF vulnerability in the normal RV by a mechanism compatible with the restitution hypothesis.  相似文献   

7.
The effects of acute amiodarone infusion on dynamics of ventricular fibrillation (VF) are unclear. Six isolated swine right ventricles (RVs) were studied in vitro. Activation patterns during VF were mapped optically, whereas action potentials were recorded with a glass microelectrode. At baseline, VF was associated with frequent spontaneous wave breaks. Amiodarone (2.5 microg/ml) reduced spontaneous wave breaks and increased the cycle length (CL) of VF from 83.3 +/- 17.8 ms at baseline to 118.4 +/- 25.8 ms during infusion (P < 0.05). Amiodarone increased the reentrant wave front CL (114.4 +/- 15.5 vs. 78.2 +/- 19.0 ms, P < 0.05) and central core area (4.1 +/- 3.8 vs. 0.9 +/- 0.3 mm2, P < 0.05). Within 30 min of infusion, VF terminated (n = 1), converted to ventricular tachycardia (VT) (n = 1) or continued at a slower rate (n = 4). Amiodarone flattened the APD restitution curves. We conclude that amiodarone reduced spontaneous wave breaks. It might terminate VF or convert VF to VT. These effects were associated with the flattening of APD restitution slope and increased core size of reentrant wave fronts.  相似文献   

8.
The intrinsic heterogeneity of electrical action potential (AP) properties between Purkinje fibers (PFs) and the ventricular wall, as well as within the wall, plays an important role in ensuring successful excitation of the ventricles. It can also be proarrhythmic due to nonuniform repolarization across the Purkinje-ventricular junction. However, the ionic mechanisms that underlie the marked AP differences between PFs and ventricular cells are not fully characterized. We studied such mechanisms by developing a new family of biophysically detailed AP models for rabbit PF cells and three transmural ventricular cell types. The models were based on and validated against experimental data recorded from rabbit at ionic channel, single cell, and tissue levels. They were then used to determine the functional roles of each individual ionic channel current in modulating the AP heterogeneity at the rabbit Purkinje-ventricular junction, and to identify specific currents responsible for the differential response of PFs and ventricular cells to pharmacological interventions.  相似文献   

9.
Regional hyperkalemia during acute myocardial ischemia is a major factor promoting electrophysiological abnormalities leading to ventricular fibrillation (VF). However, steep action potential duration restitution, recently proposed to be a major determinant of VF, is typically decreased rather than increased by hyperkalemia and acute ischemia. To investigate this apparent contradiction, we simulated the effects of regional hyperkalemia and other ischemic components (anoxia and acidosis) on the stability of spiral wave reentry in simulated two-dimensional cardiac tissue by use of the Luo-Rudy ventricular action potential model. We found that the hyperkalemic "ischemic" area promotes wavebreak in the surrounding normal tissue by accelerating the rate of spiral wave reentry, even after the depolarized ischemic area itself has become unexcitable. Furthermore, wavebreak and fibrillation can be prevented if the dynamical instability of the normal tissue is reduced significantly by targeting electrical restitution properties, suggesting a novel therapeutic approach.  相似文献   

10.
The role of the cardiac sympathetic nerve activity in various cardiac diseases is typically evaluated using β-adrenergic receptor antagonists. However, these antagonists induce global denervation effects not only in the cardiovascular system, but also in the brain and kidney. The objective of this study was to detect the electrophysiological property changes due to 8 days of cardiac sympathetic denervation and investigate the possible mechanisms underlying these changes using a more cardiac-specific bilateral stellate ganglionectomy (SGX) rat model. High-resolution optical mapping using a voltage-sensitive dye was performed in isolated Langendorff-perfused sham and SGX hearts, which were paced at progressively reduced basic cycle lengths under several different conditions: control, pretreatment with isoproterenol, and administration of atenolol and esmolol. Several electrophysiological parameters were recorded during periodic pacing and ventricular fibrillation (VF). Our results demonstrate that cardiac sympathetic denervation by bilateral SGX shortens action potential duration (APD) and flattens the APD restitution curve, but does not significantly affect spatial dispersion of APD. We found that, although the vulnerability of sham and SGX hearts to VF is similar, the dynamics of VF are different. The maximum dominant frequency is higher, and the spatial distribution of VF is more complex in the SGX heart, resulting in different mechanisms of VF. We demonstrated that β(1)-adrenergic receptors are downregulated in the SGX compared with sham hearts. In addition, our data suggest that the mechanism of cardiac sympathetic denervation by SGX surgery is more similar to the administration of β-blocker esmolol than atenolol.  相似文献   

11.
Numerical integration of mathematical models of heart cell electrophysiology provides an important computational tool for studying cardiac arrhythmias, but the abundance of available models complicates selecting an appropriate model. We study the behavior of two recently published models of human ventricular action potentials, the Grandi-Pasqualini-Bers (GPB) and the O''Hara-Virág-Varró-Rudy (OVVR) models, and compare the results with four previously published models and with available experimental and clinical data. We find the shapes and durations of action potentials and calcium transients differ between the GPB and OVVR models, as do the magnitudes and rate-dependent properties of transmembrane currents and the calcium transient. Differences also occur in the steady-state and S1–S2 action potential duration and conduction velocity restitution curves, including a maximum conduction velocity for the OVVR model roughly half that of the GPB model and well below clinical values. Between single cells and tissue, both models exhibit differences in properties, including maximum upstroke velocity, action potential amplitude, and minimum diastolic interval. Compared to experimental data, action potential durations for the GPB and OVVR models agree fairly well (although OVVR epicardial action potentials are shorter), but maximum slopes of steady-state restitution curves are smaller. Although studies show alternans in normal hearts, it occurs only in the OVVR model, and only for a narrow range of cycle lengths. We find initiated spiral waves do not progress to sustained breakup for either model. The dominant spiral wave period of the GPB model falls within clinically relevant values for ventricular tachycardia (VT), but for the OVVR model, the dominant period is longer than periods associated with VT. Our results should facilitate choosing a model to match properties of interest in human cardiac tissue and to replicate arrhythmia behavior more closely. Furthermore, by indicating areas where existing models disagree, our findings suggest avenues for further experimental work.  相似文献   

12.
Because congestive heart failure (CHF) promotes ventricular fibrillation (VF), we compared VF in seven dogs with CHF induced by combined myocardial infarction and rapid ventricular pacing to VF in six normal dogs. A noncontact, multielectrode array balloon catheter provided full-surface real-time left ventricular (LV) endocardial electrograms and a dynamic color-coded display of endocardial activation projected onto a three-dimensional model of the LV. Fast Fourier transform (FFT) analysis of virtual electrograms showed no difference in peak or centroid frequency in CHF dogs compared with normals. The average number of simultaneous noncontiguous wavefronts present during VF was higher in normals (2.4 +/- 1.0 at 10 s of VF) than in CHF dogs (1.3 +/- 1.0, P < 0.005) and decreased in both over time. The wavefront "turnover" rate, estimated using FFT of the noncontiguous wavefront data, did not differ between normals and CHF and did not change over 5 min of VF. Thus the fundamental frequency characteristics of VF are unaltered by CHF, but dilated abnormal ventricles sustain fewer active wavefronts than do normal ventricles.  相似文献   

13.
Recent experimental and theoretical results have stressed the importance of modeling studies of reentrant arrhythmias in cardiac tissue and at the whole heart level. We introduce a six-variable model obtained by a reformulation of the Priebe-Beuckelmann model of a single human ventricular cell. The reformulated model is 4.9 times faster for numerical computations and it is more stable than the original model. It retains the action potential shape at various frequencies, restitution of action potential duration, and restitution of conduction velocity. We were able to reproduce the main properties of epicardial, endocardial, and M cells by modifying selected ionic currents. We performed a simulation study of spiral wave behavior in a two-dimensional sheet of human ventricular tissue and showed that spiral waves have a frequency of 3.3 Hz and a linear core of approximately 50-mm diameter that rotates with an average frequency of 0.62 rad/s. Simulation results agreed with experimental data. In conclusion, the proposed model is suitable for efficient and accurate studies of reentrant phenomena in human ventricular tissue.  相似文献   

14.
Spatial heterogeneity in the properties of ion channels generates spatial dispersion of ventricular repolarization, which is modulated by gap junctional coupling. However, it is possible to simulate conditions in which local differences in excitation properties are electrophysiologically silent and only play a role in pathological states. We use a numerical procedure on the Luo-Rudy phase 1 model of the ventricular action potential (AP1) in order to find a modified set of model parameters which generates an action potential profile (AP2) almost identical to AP1. We show that, although the two waveforms elicited from resting conditions as a single AP are very similar and belong to membranes sharing similar passive electrical properties, the modified membrane generating AP2 is a weaker current source than the one generating AP1, has different sensitivity to up/down-regulation of ion channels and to extracellular potassium, and a different electrical restitution profile. We study electrotonic interaction of AP1- and AP2 - type membranes in cell pairs and in cable conduction, and find differences in source-sink properties which are masked in physiological conditions and become manifest during intercellular uncoupling or partial block of ion channels, leading to unidirectional block and spatial repolarization gradients. We provide contour plot representations that summarize differences and similarities. The present report characterizes an inverse problem in cardiac cells, and strengthen the recently emergent notion that a comprehensive characterization and validation of cell models and their components are necessary in order to correctly understand simulation results at higher levels of complexity.  相似文献   

15.
In the whole heart, millions of cardiac cells are involved in ventricular fibrillation (VF). Experimental studies indicate that VF is sustained by re-entrant activity, and that each re-entrant wave rotates around a filament of phase singularity. Filaments act as organising centres, and offer a way to simplify and quantify the complex spatio-temporal behaviour observed in VF. Where a filament touches the surface of fibrillating myocardium re-entrant activity can be observed, however the behaviour of filaments within bulk ventricular myocardium is difficult to observe directly using present experimental techniques. Large scale computational simulations of VF in three-dimensional (3D) tissue offer a tool to investigate the properties and behaviour of filaments, and the aim of this paper is to review recent advances in this area as well as to compare recent computational studies of fibrillation in whole ventricle geometries.  相似文献   

16.
BackgroundRemodeling of cardiac repolarizing currents, such as the downregulation of slowly activating K+ channels (IKs), could underlie ventricular fibrillation (VF) in heart failure (HF). We evaluated the role of Iks remodeling in VF susceptibility using a tachypacing HF model of transgenic rabbits with Long QT Type 1 (LQT1) syndrome.ConclusionsCompared with LMC-TICM, LQT1-TICM rabbits exhibit steepened APD restitution and complex DA modulated by Ca2+. Our results strongly support the contention that the downregulation of IKs in HF increases Ca2+ dependent alternans and thereby the risk of VF.  相似文献   

17.
Spatial heterogeneity of repolarization can provide a substrate for reentry to occur in myocardium. This heterogeneity may result from spatial differences in action potential duration (APD) restitution. The restitution portrait (RP) measures many aspects of rate-dependent restitution: the dynamic restitution curve (RC), S1-S2 RC, and short-term memory response. We used the RP to characterize epicardial patterns of spatial heterogeneity of restitution that were repeatable across animals. New Zealand White rabbit ventricles were paced from the epicardial apex, midventricle, or base, and optical action potentials were recorded from the same three regions. A perturbed downsweep pacing protocol was applied that measured the RP over a range of cycle lengths from 1,000 to 140 ms. The time constant of short-term memory measured close to the stimulus was dependent on location. In the midventricle the mean time constant was 19.1 +/- 1.1 s, but it was 39% longer at the apex (P < 0.01) and 23% longer at the base (P = 0.03). The S1-S2 RC slope was dependent on pacing site (P = 0.015), with steeper slope when pacing from the apex than from the base. There were no significant repeatable spatial patterns in steady-state APD at all cycle lengths or in dynamic RC slope. These results indicate that transient patterns of epicardial heterogeneity of APD may occur after a change in pacing rate. Thus it may affect cardiac electrical stability at the onset of a tachycardia or during a series of ectopic beats. Differences in restitution with respect to pacing site suggest that vulnerability may be affected by the location of reentry or ectopic foci.  相似文献   

18.
Alterations in alpha(1)-adrenoceptor (alpha(1)AR) density and related signal transduction proteins were reported in cardiomyopathic hearts in the failing stage. The electromechanical modification of alpha(1)-adrenergic stimulation in the failing heart is unclear. The present study compares the alpha(1)AR-stimulated electromechanical response in failing ventricles of genetically cardiomyopathic BIO 14.6 hamsters (280-320 days old) with that in age-matched normal Syrian hamsters. The action potential was recorded with a conventional microelectrode technique, and twitch force was measured with a transducer. In the presence of propranolol, phenylephrine increased the contraction and prolonged the action potential duration (APD) to similar values in ventricles of both strains, despite a prolonged basal APD in cardiomyopathic ventricles. The positive inotropism stimulated by phenylephrine was inhibited by staurosporine, and was potentiated by 4 beta-phorbol-12,13-dibutyrate (PDBu) in both strains. The maximum positive inotropic effect of phenylephrine in PDBu-treated ventricles of normal hamsters was significantly greater than that in BIO 14.6 hamsters. The effects of phenylephrine on the ventricular force-frequency relationship and on the mechanical restitution in both normal and BIO 14.6 strain hamsters were examined. The uniform negative force-frequency relationship and the altered mechanical restitution reveal a defect of intracellular Ca(2+) handling in cardiomyopathic BIO 14.6 hamsters. alpha(1)-Adrenergic modulation cannot convert the defective properties in the model of the failing heart. Nevertheless, phenylephrine decreased post-rest potentiation in short rest periods, and enhanced post-rest decay after longer resting periods. The results indicate that alpha(1)-adrenergic action enhances a gradual loss of Ca(2+) from the sarcoplasmic reticulum, although its action in prolonging the APD can indirectly increase the influx of Ca(2+).  相似文献   

19.
Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models are used to reveal basic mechanisms of cardiac contraction as well as the mechanisms of cardiac dysfunction in disease conditions. In this paper, we present a methodology to construct finite element electromechanical models of ventricular contraction with anatomically accurate ventricular geometry based on magnetic resonance and diffusion tensor magnetic resonance imaging of the heart. The electromechanical model couples detailed representations of the cardiac cell membrane, cardiac myofilament dynamics, electrical impulse propagation, ventricular contraction, and circulation to simulate the electrical and mechanical activity of the ventricles. The utility of the model is demonstrated in an example simulation of contraction during sinus rhythm using a model of the normal canine ventricles.  相似文献   

20.
This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号