首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasmidic chromate resistance genes chrBAC from Shewanella sp. strain ANA-3 were transferred to Escherichia coli . Expression of chrA alone, on a high- or low-copy number plasmid, conferred increased chromate resistance. In contrast, expression of the complete operon chrBAC on a high-copy number plasmid did not result in a significant increase in resistance, although expression on a low-copy number plasmid made the cells up to 10-fold more resistant to chromate. The chrA gene also conferred increased chromate resistance when expressed in Pseudomonas aeruginosa . The chrR gene from the P. aeruginosa chromosome was necessary for full chromate resistance conferred by chrA . A diminished chromate uptake in cells expressing the chrA gene suggests that chromate resistance is due to chromate efflux.  相似文献   

2.
The chromate ion transporter (CHR) superfamily includes proteins that confer chromate resistance by extruding toxic chromate ions from cytoplasm. Burkholderia xenovorans strain LB400 encodes six CHR homologues in its multireplicon genome and has been reported as highly chromate-resistant. The objective of this work was to analyze the involvement of chr redundant genes in chromate resistance by LB400. It was found that B. xenovorans plant rhizosphere strains lacking the megaplasmid are chromate-sensitive, suggesting that the chr gene present in this replicon is responsible for the chromate-resistance phenotype of the LB400 strain. Transformation of a chromate-sensitive B. xenovorans strain with each of the six cloned LB400 chr genes showed that genes from ‘adaptive replicons’ (chrA1b and chr1NCb from chromosome 2 and chrA2 from the megaplasmid) conferred higher chromate resistance levels than chr genes from ‘central’ chromosome 1 (chrA1a, chrA6, and chr1NCa). An LB400 insertion mutant affected in the chrA2 gene displayed a chromate-sensitive phenotype, which was fully reverted by transferring the chrA2 wild-type gene, and partially reverted by chrA1b or chr1NCb genes. These data indicate that chr genes from adaptive replicons, mainly chrA2 from the megaplasmid, are responsible for the B. xenovorans LB400 chromate-resistance phenotype.  相似文献   

3.
4.
5.
Chromate-hypersensitive mutants of the Pseudomonas aeruginosa PAO1 strain were isolated using transposon-insertion mutagenesis. Comparison of the nucleotide sequences of the regions interrupted in the mutants with the PAO1 genome revealed that the genes affected in three mutant strains were oprE (ORF PA0291), rmlA (ORF PA5163), and ftsK (ORF PA2615), respectively. A relationship of these genes with chromate tolerance has not been previously reported. No other phenotypic changes were observed in the oprE mutant but its resistance to chromate was not fully restored by expressing the ChrA protein, which extrudes chromate ions from the cytoplasm to the periplasmic space. These data suggest that OprE participates in the efflux of chromate from the periplasm to the outside. Increased susceptibility of the rmlA mutant to the metals cadmium and mercury and to the anion-superoxide generator paraquat suggests a protective role of LPS against chromate toxicity. A higher susceptibility of the ftsK mutant to compounds affecting DNA structure (ciprofloxacin, tellurite, mitomycin C) suggests a role of FtsK in the recombinational repair of DNA damage caused by chromate. In conclusion, the P. aeruginosa genome contains diverse genes related to its intrinsic resistance to chromate. Systems pertaining to the outer membrane (OprE), the cell wall (LPS), and the cytoplasm (FtsK) were identified in this work as involved in chromate protection mechanisms.  相似文献   

6.
7.
Bacterial strains, previously isolated from a chromium-polluted soil, were identified on the basis of Gram reaction and biochemical characteristics (Biolog system). Moreover, chromate MICs, chromate reduction capability, multiple heavy metal tolerance, and antibiotic susceptibility were tested for each isolate. All strains but one were Gram-positive and resistant to high concentrations of chromate. The most Cr(VI)-resistant isolate (22mM) was identified as Corynebacterium hoagii. All Cr(VI)-resistant strains except the isolate ChrC20 were capable of catalyzing the reduction of Cr(VI) to Cr(III), a less toxic and less water-soluble form of chromium. The only isolate Cr(VI)-sensitive, attributed to the Pseudomonas genus, also exhibited Cr(VI)-reduction. Isolates were also screened for the presence of plasmid DNA. The strains ChrC20 and ChrB20 harbored one and two plasmids of high molecular mass, respectively. This approach permitted selection of some bacterial strains, which could be used for bioremediation of Cr(VI)-polluted environments. Received: 21 February 2002 / Accepted: 27 March 2002  相似文献   

8.
9.
10.
The chrA gene of Pseudomonas aeruginosa plasmid pUM505 encodes the hydrophobic protein ChrA, which confers resistance to chromate by the energy-dependent efflux of chromate ions. Chromate-sensitive mutants were isolated by in vivo random mutagenesis. Transport experiments with cell suspensions of selected mutants showed that 51CrO4(2-) extrusion was drastically lowered as compared to suspensions of the strain with the wild-type plasmid, confirming that the mutations affected a chromate efflux system. DNA sequence analysis showed that most point mutations affected amino acids clustered in the N-terminal half of ChrA, altering either cytoplasmic regions or transmembrane segments, and replaced residues moderately to highly conserved in ChrA homologs. PhoA and LacZ translational fusions were used to confirm the membrane topology at the N-terminal half of the ChrA protein.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号