首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High affinity (KD approximately 1 X 10(-9) M) monoclonal antibodies (ROS-1 and ROS-2) were prepared to bovine photoreceptor outer segment cGMP phosphodiesterase. ROS-1 immunoadsorbed greater than 95% of the cGMP phosphodiesterase activity from a detergent-solubilized bovine retina extract while ROS-2 immunoadsorbed only a subfraction of the same activity. Sodium dodecyl sulfate gel analysis of these immunoadsorbates demonstrated that ROS-1 and ROS-2 specifically adsorbed only peptides that comigrated with purified rod outer segment phosphodiesterase. Limited trypsin digestion of purified rod outer segment phosphodiesterase greatly reduced its affinity for ROS-1 but not ROS-2. When a crude heat-stable inhibitor fraction was added back to the activated enzyme, the affinity for ROS-1 was restored, suggesting that the inhibitor was necessary for ROS-1 binding. ROS-1 but not ROS-2 was found to inhibit cGMP phosphodiesterase which had been activated either by dilution or guanyl nucleotide. The inhibitory property of ROS-1 may provide a useful probe for directly studying the effects of this phosphodiesterase on the phototransduction response in the retina. Sodium dodecyl sulfate gel analysis demonstrated that the ROS-1 immunoadsorbates from mammals, fish, and amphibia contained peptides of similar mobility. Immunocytochemistry performed with ROS-1 and fluorescein isothiocyanate-conjugated rabbit anti-mouse IgG localized the antigenic determinant to both rod and cone outer segments suggesting the presence of an antigenically similar phosphodiesterase in both types of photoreceptors.  相似文献   

2.
cGMP phosphodiesterase in rod and cone outer segments of the retina   总被引:11,自引:0,他引:11  
Immunochemical, chromatographic, and sodium dodecyl sulfate gel electrophoresis studies suggest that immunologically related but distinct cyclic GMP phosphodiesterases are present in rod and cone outer segments of the retina. Immunocytochemical studies demonstrated that one monoclonal antibody (ROS-1) recognized a determinant present in both rod and cone outer segments, while another monoclonal antibody (ROS-2) only recognized rod outer segments. At least two peaks of phosphodiesterase activity could be separated by high-performance anion-exchange chromatography of retinal extracts. Both peaks were recognized by ROS-1. None of the first peak and only 80% of the second broad peak of activity were recognized by ROS-2. High-performance liquid chromatography profiles from human fovea and several other types of cone-enriched retina showed that most of the activity was contained in the first peak, suggesting that this activity was derived from cone outer segments. Conversely, the phosphodiesterase in rod-enriched preparations migrated predominately in the second peak. Sodium dodecyl sulfate-gel electrophoresis indicated that this first peak contained a single large immunoreactive polypeptide (alpha') that migrated with the same mobility as a phosphorylase b standard and was distinct from the more rapidly migrating large immunoreactive polypeptides (alpha and beta) present in a broad second peak. The second peak could be further separated into a first part that contained a doublet of two immunoreactive polypeptides (alpha and beta) that migrated faster than phosphorylase b and a later part that contained only the most rapidly migrating polypeptide (beta). All of the peaks could be activated by histone or transducin:GTP, implying that all contained a small 11-kDa inhibitory subunit (gamma) of the enzyme. Since the larger (alpha') and smaller (beta) immunoreactive polypeptides could be completely separated from the alpha polypeptide and from each other, yet still retain the ability to be activated by histone or transducin, the data suggest that only a single species of polypeptide-inhibitor complex (e.g. alpha' gamma, alpha gamma, or beta gamma) was required for histone or transducin:GTP activation.  相似文献   

3.
We have examined the activity of cyclic AMP phosphodiesterase, cyclic GMP phosphodiesterase and the protein activator of cyclic AMP phosphodiesterase in various anatomic and subcellular fractions of the bovine eye. Cyclic GMP hydrolysis was 1.6--12 times faster than hydrolysis of cyclic AMP in the subcellular fractions of the retina and in the precipitate of the rod outer segment. An opposite pattern was seen in the bovine lens, where the hyrolysis of cyclic AMP occurred 17 and 169 times faster than that of cyclic GMP in the supernatant and precipitate of lens, respectively. The activity of cyclic AMP phosphodiesterase was not affected by ethylene-glycol bis(beta-aminoethylether)-N,N'-tetraacetic acid in any fractions except in the retinal supernatant, suggesting that the phosphodiesterase exists primarily as a Ca2+-independent, activator-independent form. However, the protein activator of cyclic AMP phosphodiesterase existed in all fractions examine. A complex kinetic patternwas observed for both cyclic AMP and cyllic GMP hydrolysis by the 105000 times g lens supernatant. The Michaelis constants for both cyclic AMP (1.3-10(-6) and 9.I-10(-6) M) and cyclic GMP (1.04-10(6) AND 1.22 10(-5) M) appeared to be similar.  相似文献   

4.
The biochemical bases for the differences in cone and rod photoreceptor physiology have not been thoroughly examined because of the difficulty in obtaining cone photoreceptor components. We report here the purification and preliminary characterization of a bovine cyclic GMP phosphodiesterase (PDE) which is enriched in cone photoreceptors. The cone PDE was purified at least 15,000-fold to apparent homogeneity from bovine retinas by DEAE-cellulose and cGMP-Sepharose affinity chromatography. The trypsin-activated cone PDE hydrolyzed cGMP with efficiency similar to that of the rod PDE. However, a number of characteristics distinguished the cone PDE from the rod isozyme including the subunit structure. As previously reported, the apparent molecular weight of the cone PDE large subunit (alpha') was slightly larger than either of the large subunits of the rod PDE (93,500 versus 88,000 and 84,000). Three other smaller polypeptides were associated with the alpha' subunit (Mr = 11,000, 13,000, and 15,000), one of which (11,000) may be identical to the rod PDE gamma subunit. Cone phosphodiesterase binds at least 10-fold more cyclic GMP/mol of PDE than the rod photoreceptor isozyme. Cyclic GMP binds to this noncatalytic site with high affinity (Kd = 11 nM) and dissociates very slowly (t1/2 = 10-20 min at 37 degrees C). Purified rod transducin activated the cone PDE in solution to at least 90% of the trypsin-activated level. The concentration of rod transducin required for half-maximal activation of cone PDE (15 nM) was 50-fold lower than that necessary for half-maximal activation of rod PDE. Thus several properties of the cone phosphodiesterase clearly distinguish it from the rod isozyme and could account for some differences in cone and rod physiology.  相似文献   

5.
Cyclic GMP concentration and cyclic GMP phosphodiesterase activity were studied in rat mothers and fetuses at 17, 19 and 21 days of intrauterine life and 0, 1, 4, 10, 15,20, 30 and 45 days after birth. During this developmental period, the increase in cyclic GMP concentration was discrete and the value in 15-day-old rats was already similar to the adult level. Cyclic GMP phosphodiesterase activity increased from 17- to 19-day fetuses and was significantly reduced in 21-day fetuses, neonates, and 1-day-old rats. This reduction may be a result of fetal endocrine preparation for parturition. During postnatal development, cyclic GMP phosphodiesterase activity increased in a parallel way in the limbic system, corpora striata, cerebral hemispheres, and diencephalon, reaching maximal level between 20 and 30 days after birth, and then decreasing to the adult value. The highest activity was found in corpora striata and the lowest in diencephalon. Cerebellar cyclic GMP phosphodiesterase activity was very high in the 4-day-old rat (257% of adult value) and diminished significantly in the 10-day-old rat with no subsequent changes. Kinetic analysis of the enzyme during postnatal forebrain development showed an increase in both the Vmax and the apparent Km. A decrease in the enzyme's Vmax was observed only in the cerebellum.The importance of cyclic GMP phosphodiesterase regulation of cyclic GMP concentrations in the brain during development is discussed.  相似文献   

6.
The cyclic nucleotide phosphodiesterase (EC 3.4.16) activities of a rat liver particulate fraction were analyzed after solubilization by detergent or by freeze-thawing. Analysis of the two extracts by DEAE-cellulose chromatography revealed that they contain different complements of phosphodiesterase activities. The detergent-solubilized extract contained a cyclic GMP phosphodiesterase, a low affinity cyclic nucleotide phosphodiesterase whose hydrolysis of cyclic AMP was activated by cyclic GMP and a high affinity cyclic AMP phosphodiesterase. The freeze-thaw extract contained a cyclic GMP phosphodiesterase and two high affinity cyclic AMP phosphodiesterase, but no low affinity cyclic nucleotide phosphodiesterase. The cyclic AMP phosphodiesterase activities from the freeze-thaw extract and from the detergent extract all had negatively cooperative kinetics. One of the cyclic AMP phosphodiesterases from the freeze-thaw extract (form A) was insensitive to inhibition by cyclic GMP; the other freeze-thaw solubilized cyclic AMP phosphodiesterase (form B) and the detergent-solubilized cyclic AMP phosphodiesterase were strongly inhibited by cyclic GMP. The B enzyme appeared to be converted into the A enzyme when the particulate fraction was stored for prolonged periods at -20 degrees C. The B form was purified extensively, using DEAE-cellulose, a guanine-Sepharose column and gel filtration. The enzyme retained its negatively cooperative kinetics and high affinity for both cyclic AMP and cyclic GMP throughout the purification, although catalytic activity was always much greater for cyclic AMP. Rabbit antiserum was raised against the purified B enzyme and tested via a precipitin reaction against other forms of phosphodiesterase. The antiserum cross-reacted with the A enzyme and the detergent-solubilized cyclic AMP phosphodiesterase from rat liver. It did not react with the calmodulin-activated cyclic GMP phosphodiesterase of rat brain, the soluble low affinity cyclic nucleotide phosphodiesterase of rat liver or a commercial phosphodiesterase preparation from bovine heart. These results suggest a possible interrelationship between the high affinity cyclic nucleotide phosphodiesterase of rat liver.  相似文献   

7.
Exceptionally high levels of guanosine 3'-5'-cyclic monophosphate (cyclic GMP) in the accessory reproductive gland of the male house cricket, Acheta domesticus, led to an investigation of cyclic nucleotide phosphodiesterase (EC 3.1.4.--) as a possible regulatory enzyme. Cricket cyclic nucleotide phosphodiesterase activity with cyclic GMP or cyclic AMP as substrate had a pH optimum around 9.0, required Mg2+ or Mn2+ for maximal activity, and was inhibited by EDTA and methylxanthines. Cyclic GMP phosphodiesterase occurred mainly in the soluble fraction of homogenates of accessory glands or whole crickets, but cyclic AMP phosphodiesterase in the accessory gland was primarily particulate. Kinetic analysis indicated three forms of cyclic GMP phosphodiesterase, with Km values at 2.9 muM, 71 muM and 1.5 mM. Chromatography of whole cricket or accessory gland extracts on DEAE cellulose gave an initial peak having comparable activity with either cyclic GMP or cyclic AMP, and a second peak specific for cyclic AMP. There were no appreciable changes in the specific activity or kinetic properties of accessory gland cyclic GMP phosphodiesterase during a developmental period over which cyclic GMP levels rise more than 500-fold. Thus, the accumulation of cyclic GMP in the accessory gland is probably not associated with concomitant developmental modulation of phosphodiesterase activity.  相似文献   

8.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   

9.
10.
Centrifugation of homogenates of bovine retinas to isopycnic equilibrium in sucrose density gradients yielded three partially overlapping bands of particles which were, in the order of increasing density: (a) photoreceptor cell (rod) outer segments; (b) plasma membranes, lysosomes, and large fragments of endoplasmic reticulum; and (c) mitochondria. The only enzyme activity investigated which had a peak coinciding only with outer segment fractions was guanylate cyclase. Enzyme activities with peaks in both the outer segment and denser fractions included 5'-nucleotidase and cyclic GMP phosphodiesterase. Enzyme activities with peaks only in the denser fractions included sodium and potassium ion-activated ATPase ((Na+ + K+)-ATPase), adenylate cyclase, cyclic AMP phosphodiesterase, beta-glucosidase, beta-galactosidase, and succinate-dependent cytochrome c reductase. These results suggest that some of the activities once thought to be present in rod outer segments are actually present in particles from elsewhere in the retina which contaminate rod outer segment preparations.  相似文献   

11.
Cyclic nucleotide phosphodiesterase was examined in canine and bovine superior cervical ganglia. Activity in crude supernatant fractions was only slightly stimulated by Ca++ despite the presence of protein activating factor. Three forms of phosphodiesterase were resolved from bovine ganglia supernatant extracts by chromatography on DEAE-cellulose. The first enzyme eluted, (DI), was almost completely specific for cyclic GMP, while the other two (DII and DIII), hydrolyzed both cyclic AMP and cyclic GMP; all were free of heat-stable protein activator. Each enzyme was inhibited by low concentrations of Ca++ in the assay medium. Inhibition by Ca++ was reversed by addition of protein activator, but activity did not increase above the control level. Cyclic AMP hydrolysis by enzyme DII was stimulated by micromolar concentrations of cyclic GMP. This stimulation was reduced by Ca++ unless protein activator was present.  相似文献   

12.
Cyclic nucleotide phosphodiesterase activity towards cyclic AMP and cyclic GMP was studied in extracts of rat islets of Langerhans. Biphasic Eadie plots [Eadie (1942) J. Biol. Chem. 146, 85-93] were obtained with either substrate suggesting the presence of both 'high'- and 'low'-Km components. The apparent Km values were 6.2 +/- 0.5 (n = 8) microM and 103.4 +/- 13.5 (6) microM for cyclic AMP and 3.6 +/- 0.3 (12) microM and 61.4 +/- 7.5 (13) microM for cyclic GMP. With cyclic AMP as substrate, phosphodeisterase activity was increased by calmodulin and Ca2+ and decreased by trifluoperazine, a specific inhibitor of calmodulin. With cyclic GMP as substrate, phosphodiesterase activity was decreased by omission of Ca2+ or addition of trifluoperazine. Addition of exogenous calmodulin had no effect on activity. The data suggest that Ca2+ may influence the islet content of cyclic AMP and cyclic GMP via effects on calmodulin-dependent cyclic nucleotide phosphodiesterase(s).  相似文献   

13.
1. A cyclic nucleotide phosphodiesterase (EC 3.1.4.16) has been partially purified from bovine rod outer segments. The enzyme preparation obtained has a very high specific activity towards cyclic GMP and is still able to hydrolyze cyclic AMP. Upon polyacrylamide gel electrophoresis, one major and three minor protein bands are seen, the enzyme activity being associated with the major band. The enzyme eluted from the gels still hydrolyzes both cyclic nucleotides. At all substrate concentrations tested, cyclic GMP was hydrolyzed at a faster rate. The enzyme eluted from the gel columns migrated as a single band upon electrophoresis in 0.1% sodium dodecyl sulfate-polyacrylamide gels corresponding to a molecular weight of 105 000. 2. A complex kinetic pattern was observed for cyclic GMP hydrolysis: the plot of velocity vs substrate concentration was hyperbolic at low and sigmoidal at higher concentrations. By contrast, simple kinetics were observed for cyclic AMP hydrolysis yielding an apparent Km of 0.1 mM. The unusual kinetics may be implicated in the regulation of cyclic GMP levels in rod outer segments. 3. Cyclic AMP stimulated the hydrolysis of cyclic GMP at low and inhibited it at higher concentrations. Addition of Mg2+ appeared to be necessary for optimum activity. The activity measured in the absence of exogenous Mg2+ was abolished by EDTA.  相似文献   

14.
DEAE-cellulose chromatography demonstrated that the levels of the individual cyclic nucleotide phosphodiesterase were unchanged in the aorta and heart of the spontaneously hypertensive rat as compared with the normotensive control rat. Three peaks of cyclic nucleotide phosphodiesterase activity were observed in both heart and aorta. Peak I enzyme hydrolyzed predominantly cyclic GMP while peak III enzyme hydrolyzed predominantly cyclic AMP. Peak II enzyme was less specific but hydrolyzed more cyclic GMP than cyclic AMP The levels of phosphodiesterase activator in aorta and the responsiveness of peaks I and II from aorta and heart to activator were unchanged in the hypertensive rat. Therefore the decrease in cyclic AMP levels observed by others in aorta and heart of the spontaneously hypertensive rat were probably not due to altered phosphodiesterase activity.  相似文献   

15.
A heat-stable, non-dialyzable inhibitory factor of cyclic nucleotide phosphodiesterase was detected in and partially purified from bovine retina. The factor appears to be a protein, since the inhibitory activity was abolished by trypsin digestion but not by DNAase or RNAase treatment. The protein inhibitor from bovine retina effectively inhibits the Ca2+-independent phosphodiesterase from several sources, including bovine retina, bovine rod outer segment, and a human lymphoblastic leukemia cell line, indicating lack of tissue and species specificity.  相似文献   

16.
The activities of guanylate cyclase, guanosine 3', 5'-monophosphate (cyclic GMP) phosphodiesterase and 5'-nucleotidase were measured during postnatal development in retinas of control and C3H/HeJ mice. In control retina, each of these enzyme activities increases in conjunction with photoreceptor cell differentiation and maturation. In C3H retina, guanylate cyclase and 5-nucleotidase activities increase with photoreceptor cell development and decrease with photoreceptor cell death. However, the activity of a class of cyclic GMP phosphodiesterase which distinguishes the photoreceptor cells of control mice and those of several other species is not demonstrable in retina of C3H mice at any age. It is suggested that the deficiency in cyclic GMP phosphodiesterase activity may account for the accumulation of cyclic GMP which has been shown to occur in the C3H photoreceptor cells before they degenerate.  相似文献   

17.
Abstract— High phosphodiesterase activity for cyclic AMP and cyclic GMP was found in subcellular fractions of the bovine retina with more rapid hydrolysis of cyclic GMP than cyclic AMP in each fraction. Rod outer segments (ROS) and the supernatant fraction had highest activity. High enzyme activity remained associated with ROS membranes through several steps of purification by gradient centrifugation. A complex kinetic pattern was observed for cyclic AMP hydrolysis by the supernatant fraction yielding two values for K m; a simple kinetic pattern was observed with cyclic GMP hydrolysis in supernatant and for both cyclic nucleotides in preparations of purified outer segments. Phosphodiesterase activity of outer segments was enhanced by Mg2+. Mn2+ and inhibited by EDTA. Cyclic AMP had relatively little effect on the hydrolysis of cyclic GMP in supernatant or ROS while cyclic GMP inhibited hydrolysis of cyclic AMP in both fractions.  相似文献   

18.
Development of phosphodiesterase activity in the chick retina   总被引:1,自引:0,他引:1  
Significant cyclic GMP phosphodiesterase activity is apparent in the early stages of development of the chick neural retina. By day 8, specific activity drops by approximately two-thirds. After day 14, a sharp rise in activity is observed, continuing through the time of hatching. Cyclic AMP phosphodiesterase activity is considerably lower and does not markedly change over the embryonic period.  相似文献   

19.
The stereochemical course of hydrolysis catalyzed by the cyclic GMP phosphodiesterase from bovine retinal rod outer segments was determined. The Sp diastereomer of guanosine 3',5'-cyclic monophosphorothioate was hydrolyzed by cyclic GMP phosphodiesterase in H2(18)O to give [16O,18O]guanosine 5'-monophosphorothioate. This isotopomer was reacted with diphenyl phosphorochloridate to form the two diastereomers of P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate. The 31P NMR spectrum of this mixture of diastereomers was identical to that obtained from [16O,18O]guanosine 5'-monophosphorothioate resulting from the hydrolysis of the Rp diastereomer of guanosine 5'-p-nitrophenyl phosphorothioate by snake venom phosphodiesterase. This finding indicates that the 18O is bridging in the Rp diastereomer of the P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate and nonbridging in the Sp diastereomer. As the snake venom phosphodiesterase reaction is known to proceed with retention of configuration, it follows that hydrolysis by retinal rod cyclic GMP phosphodiesterase proceeds with inversion of configuration at the phosphorus atom.  相似文献   

20.
A rod-specific antiserum was used to immunolabel elements within the retina and pineal of the adult Djungarian hamster and Welsh Mountain sheep. In the retina immunostaining was localized to the outer segments and perikarya of photoreceptor cells, while in the pineal limited numbers of labelled pinealocytes were scattered throughout the gland. An enzyme-linked immunosorbent assay (ELISA) was then used to obtain a quantitative measure of rod opsin in total eye and pineal extracts from the Djungarian hamster. Total rod opsin (+/- SEM) in the eye was measured by absorbance spectroscopy (1.88 +/- 0.10 nmoles opsin/eye) and by using the ELISA (1.75 +/- 0.02 nmoles opsin/eye). The opsin content from a total of 56 pineals gave a mean value of 0.34 +/- 0.01 pmoles opsin/pineal. Since a functional photopigment should be coupled in a 1:1 ratio to a chromophore, we investigated whether we could identify 11-cis and/or all-trans retinaldehydes in the pineal extracts by quantitative extraction and HPLC analysis as the oximes. No evidence of 11-cis or all-trans retinaloxime could be found, the chromatograms were indistinguishable from those produced by extracts of cortical brain tissue. We conclude that the opsin present within the adult hamster pineal is not coupled to the common vertebrate retinaldehyde chromophore, and as a result, is unlikely to be part of a functional photopigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号