首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The changes of microenvironment of tryptophan residues in -lactoglobulin A and its cyanogen bromide (CNBr) fragments with the binding of sodium dodecyl sulfate (SDS) were studied with measurements of the rates of N-bromosuccinimide (NBS) modification reactions by stopped-flow photometry. Two tryptophan residues of carboxyamidomethylated (RCM) -lactoglobulin A in the states of their complexes with SDS were clearly distinguishable by their differences in NBS modification rates. We confirmed by experiments with CNBr fragments containing tryptophan residue. The modification rates of Trp 19 in RCM -lactoglobulin A-SDS complexes were about 10-fold smaller than those expected for tryptophan residues exposed entirely to the aqueous solvent. The Trp 61 was hardly changed. The change of rate constants for Trp 19 was virtually consistent with those observed when N-acetyl-l-tryptophan ethylester was dissolved in SDS micelles. For various species of polypeptide-SDS complexes, all tryptophan residues were reactive to NBS and also, for some of them, the differences in NBS modification rates were observed between tryptophan residues on a common polypeptide chain. These results suggest micellar and heterogeneous bindings of SDS to polypeptides.  相似文献   

2.
In order to test the ability of phosphate groups to quench the fluorescence of tryptophan in protein-nucleic acid complexes we have studied the effect of various phosphate ions on the fluorescence of tryptophan derivatives. Unsubstituted and monoalkyl monoanions (H2PO4- and CH3OPO3H-) quench the fluorescence of all investigated indole derivatives while the dimethyl anion (CH3O)2 PO2- does not. This suggests that quenching of tryptophan fluorescence by phosphate monoanions requires the presence of an acidic OH group and could be due to a proton transfer from the phosphate ion to the indole chromophore. Trianions (PO4 3-4) which are strong proton acceptors quench the fluorescence of all tryptophan derivatives except N(1)methyl tryptophan. This result strongly supports our proposal that quenching of tryptophan fluorescence by phosphate trianions occurs through deprotonation of the NH indole group. Bianions (HPO '4(7), and CH3O PO3 2-3) quench the fluorescence of several indole derivatives including N-acetyl tryptophanamide but have no effect on tryptophan or N(1)-methyl tryptophan. From our results we conclude that phosphate groups of nucleic acids are not able to quench the fluorescence of tryptophyl residues in protein-nucleic acid complexes except if an accessible residue is located near a phosphorylated polynucleotide chain end.  相似文献   

3.
The stabilizing role of the disaccharide trehalose on beta-lactoglobulin (BLG) against its chemical denaturation both at native and acidic pH has been explored by means of time-resolved fluorescence of the probe acrylodan covalently bound to the unique free cysteine of BLG. The changes in acrylodan fluorescence lifetime with guanidinium chloride concentration reveal BLG sigmoidal denaturation profiles which depend upon the amount of trehalose in solution. When adding trehalose the transition midpoint shifts towards higher denaturant concentration. This effect has been measured by fitting the data with a two-state model whose parameters indicate that an almost 60% increase in the denaturation free energy is induced independently of trehalose concentrations and pH values. Fluorescence anisotropy measurements performed in the same conditions reveal that the internal dynamics are largely affected by the sugar, which makes the acrylodan environment more rigid, and by the denaturant that acts in the opposite way. The overall rotational diffusion of BLG suggests that trehalose affects the hydrodynamic properties of the solution in the proximity of the protein; tentative mechanisms are discussed.  相似文献   

4.
The thermal denaturation of bovine beta-lactoglobulin B was investigated by high-sensitivity differential scanning microcalorimetry between pH 1.5 and 3.0 in 20 mM phosphate buffer. The process was found to be a reversible, two-state transition. Progressive addition of guanidine hydrochloride at pH 3.0 leads to the appearance of a low-temperature calorimetric endotherm, corresponding to the cold renaturation of the protein. Circular dichroism experiments have confirmed the low and high temperature denaturation processes, and have shown some structural differences between both denatured states of beta-lactoglobulin B.  相似文献   

5.
6.
The conformational features of beta-lactoglobulin, refolded by cooling from a thermally perturbed state, has been characterized by intrinsic and extrinsic fluorescence measurements on the protein. It is found that even at 85-90 degrees C, beta-lactoglobulin does not completely lose its folded structure. The unfolding and refolding of beta-lactoglobulin as observed through intrinsic tryptophan fluorescence is nearly reversible because the native beta-lactoglobulin and its refolded form, following heating and cooling, show nearly identical tryptophan fluorescence properties. However, the fluorescence properties of an extrinsic probe 1-anilino 8-naphthalene sulfonic acid (ANS) for the native and refolded forms are quite different from each other. Significant increase in fluorescence intensity and blue shifts in emission maxima of ANS bound to refolded beta-lactoglobulin is observed compared to that of the native form. Our results indicate that beta-lactoglobulin, refolded after heating to above 70 degrees C, has deep hydrophobic pockets which can be accessed by ANS. These pockets are either nonexistent or inaccessible to ANS in native beta-lactoglobulin. The opening of the central cavity collapses at pH close to the isoelectric pH of the protein. This indicates that electrostatic repulsion is necessary to keep this access open.  相似文献   

7.
In our previous paper (Reshetnyak, Ya. K., and E. A. Burstein. 2001. Biophys. J. 81:1710-1734) we confirmed the existence of five statistically discrete classes of emitting tryptophan fluorophores in proteins. The differences in fluorescence properties of tryptophan residues of these five classes reflect differences in interactions of excited states of tryptophan fluorophores with their microenvironment in proteins. Here we present a system of describing physical and structural parameters of microenvironments of tryptophan residues based on analysis of atomic crystal structures of proteins. The application of multidimensional statistical methods of cluster and discriminant analyses for the set of microenvironment parameters of 137 tryptophan residues of 48 proteins with known three-dimensional structures allowed us to 1) demonstrate the discrete nature of ensembles of structural parameters of tryptophan residues in proteins; 2) assign spectral components obtained after decomposition of tryptophan fluorescence spectra to individual tryptophan residues; 3) find a correlation between spectroscopic and physico-structural features of the microenvironment; and 4) reveal differences in structural and physical parameters of the microenvironment of tryptophan residues belonging to various spectral classes.  相似文献   

8.
Tubulin, the major protein of microtubules, has been shown to be an example of protein undergoing multistep unfolding. Local unfolding and stepwise loss of a number of characteristic functions were demonstrated. In order to understand urea induced effects on tryptophan fluorescence and nucleotide binding on tubulin, both fluorescence and NMR techniques were used. Tubulin was denatured by different urea concentrations. The present experiments were carried out at concentrations of tubulin (to approximately 10 microM) at which most of the protein will be in the dimeric state. Quenching studies in the presence of KI suggest that all the tryptophans are fairly solvent exposed. Similar studies using acrylamide as quencher, suggest unfolding of tubulin at these protein concentrations to be an apparent two state process between the native and the completely unfolded states unlike at low concentrations where a partially folded intermediate was observed. No observable effects of the nucleotide or the metal ion on tryptophan fluorescence were observed. An attempt was made using NMR to monitor the changes in the nucleotide interaction with tubulin as the protein is unfolded by urea denaturation. No significant effects were observed in the binding of the nucleotide to tubulin by urea denaturation.  相似文献   

9.
Secondary-structure-prediction algorithms have been used to find the segments of beta-lactoglobulin sequence most likely to fit the circular dichroism assignment of 15% alpha-helix, 50% beta-sheet, and 15-20% reverse turn. A number of segments may have an alpha-helical conformation but the most prominent region of alpha-helix is from residue 129 to 143. A further probable alpha-helix segment is residues 65-76. The number of residues predicted to occur in segments of beta-sheet structure is less than expected. However, the most likely segments are for residues 1-6, 11-16, 39-45, 80-85, 92-96, 101-107, 117-123, and 145-151. Predicted reverse-turn tetrapeptides are residues 7-10, 49-52, 61-64, 88-91, and 112-115. These predicted secondary structures are consistent with the low-resolution structure of the molecule determined by X-ray diffraction studies.  相似文献   

10.
Polarization of tryptophan fluorescence in muscle   总被引:8,自引:0,他引:8  
J F Aronson  M F Morales 《Biochemistry》1969,8(11):4517-4522
  相似文献   

11.
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.  相似文献   

12.
Effects of temperature and pH on the structure of rabbit muscle alpha-actinin were studied by means of an intrinsic fluorescence method. Alkaline denaturation of alpha-actinin at 15 degrees C begins at pH above 9, while acidification of the solution does not cause unfolding of the protein structure, but results in protein aggregation. The maximal intensity of the isoelectric aggregation process is registered at pH 5. Thermal denaturation of alpha-actinin occurs within the temperature range from 45 degrees C to 65 degrees C. Protein has the second thermally induced transition in the region from 17 to 30 degrees C.  相似文献   

13.
Steady-state and dynamic fluorescence titrations show that: (a) the complex between beta-lactoglobulin (BLG) and 1-anilinonaphthalene-8-sulfonate (ANS) displays a heterogeneous equilibrium with large changes in the binding strength vs. pH and ion concentration; and (b) the fluorescence response of bound ANS reveals two separate lifetimes that suggest two different sites (or binding modes). While steady-state fluorescence titrations yield effective values of the binding constant and of the bound ANS quantum efficiency, it is shown that, by combining steady-state fluorescence and lifetime decay of ANS, it is possible to give quantitative estimates of the association constants for each site. When heading from the acid (pH approximately 2) to the native state (pH approximately 6) the main result is a very large reduction of the effective binding constant. This and the results of titrations vs. ionic strength suggest that electrostatic interactions are a major contribution to ANS binding to BLG.  相似文献   

14.
The fluorescence of the single tryptophan in Bacillus stearothermophilus phosphofructokinase was characterized by steady-state and time-resolved techniques. The enzyme is a tetramer of identical subunits, which undergo a concerted allosteric transition. Time-resolved emission spectral data were fitted to discrete and distributed lifetime models. The fluorescence decay is a double exponential with lifetimes of 1.6 and 4.4 ns and relative amplitudes of 40 and 60%. The emission spectra of both components are identical with maxima at 327 nm. The quantum yield is 0.31 +/- 0.01. The shorter lifetime is independent of temperature; the longer lifetime has weak temperature dependence with activation energy of 1 kcal/mol. The fluorescence intensity and decay are the same in H2O and D2O solutions, indicating that the indole ring is not accessible to bulk aqueous solution. The fluorescence is not quenched significantly by iodide, but it is quenched by acrylamide with bimolecular rate constant of 5 x 10(8) M-1 s-1. Static and dynamic light scattering measurements show that the enzyme is a tetramer in solution with hydrodynamic radius of 40 A. Steady-state and time-resolved fluorescence anisotropies indicate that the tryptophan is immobile. The allosteric transition has little effect on the fluorescence properties. The fluorescence results are related to the x-ray structure.  相似文献   

15.
16.
Long-lived tryptophan fluorescence in phosphoglycerate mutase   总被引:1,自引:0,他引:1  
J A Schauerte  A Gafni 《Biochemistry》1989,28(9):3948-3954
Phosphoglycerate mutase (PGM; EC 2.7.5.3) isolated from rat and rabbit muscle has been shown to possess an unusually long-lived fluorescence component when excited by ultraviolet light below 310 nm. On the basis of spectral and physical measurements, this 16.4 (+/- 0.2) ns fluorescence lifetime at room temperature is assigned to a tryptophan residue in an unusual environment. The emission profile of this long-lived tryptophan is red shifted from the other tryptophans of PGM by approximately 25 nm. PGM has been crystallized and sequenced from yeast where it has been shown to be a tetramer with 29K subunits. However, we have not been able to detect the existence of an unusually long-lived fluorescence component in the yeast isomer. The long fluorescence lifetime is lost upon denaturation of rabbit PGM and is partially restored upon introduction of the protein to a nondenaturing environment, suggesting the long lifetime is not the result of a covalent modification. The PGM molecule was studied by a number of techniques including time-resolved tryptophan fluorescence, quenching studies of tryptophan fluorescence, and enzyme activity studies. The long-lived fluorescence has been shown to be statistically quenched by Br-, I-, and Cu2+ in the submillimolar region while the acrylamide quenching shows the tryptophan is marginally accessible to solvent. Characterization of the long-lived fluorescence and its possible sources are discussed.  相似文献   

17.
18.
Mechanisms of tryptophan fluorescence shifts in proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
Tryptophan fluorescence wavelength is widely used as a tool to monitor changes in proteins and to make inferences regarding local structure and dynamics. We have predicted the fluorescence wavelengths of 19 tryptophans in 16 proteins, starting with crystal structures and using a hybrid quantum mechanical-classical molecular dynamics method with the assumption that only electrostatic interactions of the tryptophan ring electron density with the surrounding protein and solvent affect the transition energy. With only one adjustable parameter, the scaling of the quantum mechanical atomic charges as seen by the protein/solvent environment, the mean absolute deviation between predicted and observed fluorescence maximum wavelength is 6 nm. The modeling of electrostatic interactions, including hydration, in proteins is vital to understanding function and structure, and this study helps to assess the effectiveness of current electrostatic models.  相似文献   

19.
Quenching of tryptophan fluorescence by brominated phospholipid   总被引:7,自引:0,他引:7  
E J Bolen  P W Holloway 《Biochemistry》1990,29(41):9638-9643
Bromolipids [1-palmitoyl-2-(dibromostearoyl)phosphatidylcholine] with bromines at the 4,5-, 6,7-, 9,10-, 11,12-, and 15,16-positions were used to examine the fluorescence quenching of a synthetic, membrane-spanning peptide (Lys2-Gly-Leu8-Trp-Leu8-Lys-Ala-amide) incorporated into both small and large unilamellar vesicles. The peptide-lipid vesicles were analyzed to show that at least 75% of the peptide was in a transbilayer configuration, placing the single tryptophan in its predicted place in the center of the bilayer. Quenching profiles of the peptide in bromolipid showed maximal (90%) quenching by the 15,16-bromolipid, indicating that the bromolipids can accurately locate the position of a tryptophan in the bilayer. The quenching by the other bromolipids decreased with an r6 dependence and an apparent R0 of 9 A. In addition, indole in methanolic solution was subjected to quenching by a variety of mono- and dibrominated hydrocarbons. The quenching was analyzed, by using a modified Stern-Volmer equation, and found to be greatly dependent upon the number and positioning of the bromines. Monobromobutanes were found to have a quenching efficiency of only 7% while dibromobutanes, with bromines on adjacent carbon atoms, had efficiencies of over 80%. In addition, the dibromobutanes exhibited significant "static" quenching whereas the monobrominated butanes did not. These data suggest that the bromolipids are more appropriately defined as short-range quenchers rather than strictly contact quenchers.  相似文献   

20.
We report in this paper the presence of fluorescence bands of tryptophan and tyrosine solutions centered above 550 nm. This long-wavelength fluorescence is of much lower intensity, (0.4-2.7)%, than the UV fluorescence of these aromatic aminoacids. The basic characteristic of these fluorescence bands are: (a) tyrosine: lambda em = 600 nm with two excitation peaks centered at 453 nm and 550 nm (b) tryptophan: lambda em = 675 nm with two excitation peaks centered at 455 and 560 nm. It has been found that irradiation of tyrosine solutions with a potent UV lamp promotes an important increase of absorption at 310 nm and above 400 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号