首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pairing-induced changes of orientation maps in cat visual cortex.   总被引:5,自引:0,他引:5  
S Schuett  T Bonhoeffer  M Hübener 《Neuron》2001,32(2):325-337
We have studied the precise temporal requirements for plasticity of orientation preference maps in kitten visual cortex. Pairing a brief visual stimulus with electrical stimulation in the cortex, we found that the relative timing determines the direction of plasticity: a shift in orientation preference toward the paired orientation occurs if the cortex is activated first visually and then electrically; the cortical response to the paired orientation is diminished if the sequence of visual and electrical activation is reversed. We furthermore show that pinwheel centers are less affected by the pairing than the pinwheel surround. Thus, plasticity is not uniformly distributed across the cortex, and, most importantly, the same spike time-dependent learning rules that have been found in single-cell in vitro studies are also valid on the level of cortical maps.  相似文献   

2.
A family of moving 'random-line' patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientation-independent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus.  相似文献   

3.
A family of moving ‘random-line’ patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientationindependent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus.  相似文献   

4.
In acute experiments on immobilized cats 13 functional characteristics of 96 visual cortex neurons were investigated. By means of regression, cluster, and multivariate analyses, these could be divided into two subgroups with varying degrees of correlatedness. Cells of the first subgroup were more frequently characterized by their relatively central location in the visual receptive field, while those of the second subgroup were more often found at the periphery. A significant correlation was found between 11 of the properties investigated. In each subgroup, cells with more centrally localized small receptive fields had, in comparison with neurons of the peripheral visual projection, short latent periods, lower thresholds, phasic response, and brief summation; their responses varied widely in intensity, and they had greater differential sensitivity, and were distinguished by high-frequency discharges. Significant correlation coefficients between the factors studied fluctuated between 0.21 and 0.99; moreover, there were almost twice as many significant relationships in the first subgroup of neurons as in the second. The possible mechanisms of correlations between the properties of the visual cortex neurons are discussed, as well as the reasons why they differ in cells of the two subgroups, the cortex, and the lateral geniculate body.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 587–596, September–October, 1985.  相似文献   

5.
Finn IM  Priebe NJ  Ferster D 《Neuron》2007,54(1):137-152
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models that rely on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. (1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. (2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. (3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity.  相似文献   

6.
Dynamics of tuning to orientation of flashing light bar and to orientation of cross-like figure was studied by a temporal slices method in 87 neurons of the cat primary visual cortex. Tuning was plotted by spikes number in the entire response and in its successive fragments with a step of 20 ms. It was found that successive dynamic shift of preferred orientation of a bar was typical for 87% units, white such shift of preferred orientation of a cross was met in 75% of cases. Comparison of tuning dynamics for bar and cross allowed to separate units into three groups: the first one (58.6% of cases) with larger dynamic shift of a bar preferred orientation then of a cross (74.9 +/- 5.8 degrees [symbol: see text] 29.8 +/- 4.1 degrees, correspondingly, p < 0.00001), the second group (21.5%) with opposite effect (24.2 +/- 5.2 degrees and 69.2 +/- 10.0 degrees, p < 0.0002) and the third group (19.8%) without significant shift of preferred orientation of bar and cross and without difference in their dynamics. Possible mechanisms of the preferred orientation dynamics and its difference for bar and cross are discussed.  相似文献   

7.
Sadagopan S  Ferster D 《Neuron》2012,74(5):911-923
Contrast invariant orientation tuning in simple cells of the visual cortex depends critically on contrast dependent trial-to-trial variability in their membrane potential responses. This observation raises the question of whether this variability originates from within the cortical circuit or the feedforward inputs from the lateral geniculate nucleus (LGN). To distinguish between these two sources of variability, we first measured membrane potential responses while inactivating the surrounding cortex, and found that response variability was nearly unaffected. We then studied variability in the LGN, including contrast dependence, and the trial-to-trial correlation in responses between nearby neurons. Variability decreased significantly with contrast, whereas correlation changed little. When these experimentally measured parameters of variability were applied to a feedforward model of simple cells that included realistic mechanisms of synaptic integration, contrast-dependent, orientation independent variability emerged in the membrane potential responses. Analogous mechanisms might contribute to the stimulus dependence and propagation of variability throughout the neocortex.  相似文献   

8.
Experiments were carried out on immobilized cats to determine whether, among visual cortical neurons, besides the "scanners" described by the writers previously, which are responsible for a dynamic shift of preferred orientation, there exist also "timer" cells, which do not change the temporal parameters of their responses during rotation of a flashing stimulus. The existence of such cells is postulated on the basis of the previous hypothesis on the spatiotemporal principle of orientational coding. Of 76 neurons tested 27, i.e., 36%, were classed as "timers." They differed significantly from the "scanners" (64%) by the following properties: shorter latent periods, shorter time to the peak and duration of responses, more rapid rise of discharge frequently in the volley. The "timers" had less sharp orientational tuning and a low ratio between values of responses to presentation of preferred and worst stimuli (on account of a considerable increase in responses to unpreferred orientations). The set of preferred orientations of the "timers" was found to be highly selective and additional relative to the corresponding distribution for "scanners."The difference in frequency-temporal properties of responses and orientational tuning of the "timers" and "scanners" and their possible mutually complementary role in orientational coding at the visual cortical level are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 35–43, January–February, 1985.  相似文献   

9.
Variability of orientation tuning of primary visual cortical neurons in single orientation columns and the degree of its stability during changes in the level of contrast between stimulus and background were investigated in acute experiments on immobilized cats. Several types of orientation columns were found, with the following properties of orientation tuning of their neurons: relatively high, standard, and stable; varying widely from neuron to neuron; invariant regardless of the level of contrast; noninvariant; mixed (invariant-noninvariant). Properties of standardization-nonstandardization, on the one hand, and invariance-noninvariance of the neurons, on the other hand, may be combined differently in a column. Differences of orientation tuning within a column were observed most frequently in neurons of the upper and lower layers of the cortex. Possible differences in the functional role of the variance of orientation columns described and in the mechanisms of formation of the detector properties of their neurons are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 175–182, March–April, 1985.  相似文献   

10.
11.
The optimal direction of lines in the visual field to which neurons in the visual cortex respond changes in a regular way when the recording electrode progresses tangentially through the cortex (Hubel and Wiesel, 1962). It is possible to reconstruct the field of orientations from long, sometimes multiple parallel penetrations (Hubel and Wiesel, 1974; Albus, 1975) by assuming that the orientations are arranged radially around centers. A method is developed which makes it possible to define uniquely the position of the centers in the vicinity of the electrode track. They turn out to be spaced at distances of about 0.5 mm and may be tentatively identified with the positions of the giant cells of Meynert.  相似文献   

12.
The dynamics of orientation tuning (OT) were investigated in acute experiments on immobilized locally anesthetized cats during response development in 40 neurons of the primary visual cortex before and after Nembutal injection. The range of OT scanning decreased in 53.8% of neurons after Nembutal administration (on the average, by 53.4±5.1°; P<0.001); the phenomenon disappeared completely in some neurons. After Nembutal anesthesia, scanning in 20.5% of units either increased or started up in cases of its absence. The scanning range remained constant in 25.6% of neurons. The mentioned changes in the scanning range were consistently more accentuated in cells for which the preferred orientation, as estimated by standard criteria, was shifted under narcosis than in cells invariant to general anesthesia. In the latter group, units with an unchanged scanning range occurred four times more often at all stages of the experiment as against the group of unstable neurons.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 141–146, March–April, 1993.  相似文献   

13.
A relationship was established between the response of neurons of the cat visual cortex and the direction of movement in the visual "noise" field and of a slit of light. It was shown that a shift in the preferred direction of movement in the "noise" field in relation to that of the slit was found in orientationally selective neurons only. It was concluded that the "noise" field, which is a stimulus lacking an orientation component, does activate mechanisms of neuronal orientation selectively.V. Kapsukas State University, Vilnius. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 596–601, September–October, 1985.  相似文献   

14.
From the intracellularly recorded responses to small, rapidly flashed spots, we have quantitatively mapped the receptive fields of simple cells in the cat visual cortex. We then applied these maps to a feedforward model of orientation selectivity. Both the preferred orientation and the width of orientation tuning of the responses to oriented stimuli were well predicted by the model. Where tested, the tuning curve was well predicted at different spatial frequencies. The model was also successful in predicting certain features of the spatial frequency selectivity of the cells. It did not successfully predict the amplitude of the responses to drifting gratings. Our results show that the spatial organization of the receptive field can account for a large fraction of the orientation selectivity of simple cells.  相似文献   

15.
16.
The results of recent experiments have thrown new light on the neuronal connections underlying orientation-selective responses in the primary visual cortex of adult animals. The pattern of afferent input from the lateral geniculate nucleus to the cortex appears to be specific for orientation, while intracortical inhibitory connections appear to be non-specific in this respect. Experimental and theoretical studies have suggested that the development of cortical cell orientation tuning is an activity-dependent process.  相似文献   

17.
Tissue PO2 was measured in the primary visual cortex of anesthetized, artificially ventilated normovolemic cats to examine tissue oxygenation with respect to depth. The method utilized 1) a chamber designed to maintain cerebrospinal fluid pressure and prevent ambient PO2 from influencing the brain, 2) a microelectrode capable of recording electrical activity as well as local PO2, and 3) recordings primarily during electrode withdrawal from the cortex rather than during penetrations. Local peaks in the PO2 profiles were consistent with the presence of numerous vessels. Excluding the superficial 200 microm of the cortex, in which the ambient PO2 may have influenced tissue PO2, there was a slight decrease (4.9 Torr/mm cortex) in PO2 as a function of depth. After all depths and cats were weighted equally, the average PO2 in six cats was 12.8 Torr, with approximately one-half of the values being 相似文献   

18.
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple 'race to threshold' readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made.  相似文献   

19.
20.
电生理研究结果显示,在衰老过程中猫的视皮层神经元对视觉刺激的反应性出现显著的功能衰退,是否这种功能性衰退伴随胶质细胞活动的改变尚无直接的实验证据。以前期电生理实验猫为材料,用免疫形态学方法比较青年猫和老年猫初级视皮层内星形胶质细胞的活动状况。利用Nissl染色显示猫初级视皮层组织结构,用免疫组织化学方法(SABC法)显示GFAP免疫阳性(GFAP-IR)星形胶质细胞。光镜下观察、拍照,对GFAP-IR细胞计数并换算成密度,测量GFAP-IR直径取平均值。老年猫初级视皮层灰质各层及白质内的GFAP-IR细胞密度比青年猫的显著升高(p〈0.001)。与青年猫相比,老年猫视皮层灰质和白质中GFAP-IR细胞的平均直径均比青年猫的显著增大(p〈0.0001),且老年猫视皮层内GFAP阳性免疫反应较青年猫的明显增强。老年猫初级视皮层神经元功能衰退伴随着星形胶质细胞活动的增强,胶质细胞活动增强有助于神经元之间的信息交流,因而可能对衰老过程中神经元的功能衰退起补偿作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号