首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemical and subsequent thermal reactions of phoborhodopsin (pR490), which mediates the negative phototaxis (phobic reaction) of Halobacterium halobium, were investigated by low-temperature spectrophotometry. At room temperature, the absorption spectrum of pR490 displayed vibrational structure with a maximum at 490 nm and a shoulder at 460 nm, which were remarkably sharpened by cooling, resulting in the appearance of two well-separated peaks. On irradiation of pR490 at -170 degrees C, a photo-steady-state mixture composed of pR490 and two photoproducts, P520 and P480, was formed. P480 had an absorption maximum at 480 nm and thermally converted to pR490 above -160 degrees C, while P520 had an absorption maximum at 515 nm and thermally converted to P350, the next intermediate, above -60 degrees C. Above -30 degrees C, P350 was converted to P530, and then reverted to pR490. P520, P350, and P530 may correspond to K, M, and O intermediates of bacteriorhodopsin, respectively, on the basis of their absorption spectra, but the intermediates corresponding to L and N intermediates were not observed. On the basis of these results, a new scheme of the photoreaction cycle of pR490 was presented.  相似文献   

2.
L Zimányi  J K Lanyi 《Biochemistry》1989,28(4):1662-1666
Photostationary states of halorhodopsin (HR, a retinal protein in the halobacterial membrane) and their further thermal conversions were investigated at 140-230 K by absorption spectroscopy in the visible. The difference spectra confirm several steps of the all-trans-HR photocycle, in the presence of chloride, proposed earlier on the basis of room temperature flash spectroscopy. Thus, at 140 K, the spectra reveal the HR600----HR520 reaction, and at 170-230 K the HR640----HR578 and the HR520----HR578 reactions can be seen. No evidence for the expected HR520 in equilibrium HR640 process was found, however. From the difference spectra at various temperatures, exact absorption spectra of HR600 and HR520 were calculated, and an estimate of the HR640 spectrum in a mixture also containing HR520 was obtained. The low-temperature absorption maxima of HR578 and its photointermediates relate to the room temperature maxima differently from what is expected from the spectra of the corresponding intermediates in the bacteriorhodopsin photocycle.  相似文献   

3.
Rapid-scanning stopped-flow spectroscopy (425-700 nm) has been used to study spectral changes in cobalt(II)-substituted Bacillus cereus beta-lactamase II during the binding and hydrolysis of benzylpenicillin. The experiments were carried out in aqueous solution over a temperature range of 3-20 degrees C. Three metallointermediates have been characterized by their visible absorption spectra. Two of them have visible absorption spectra identical with the intermediates ES1 and ES2 previously observed at subzero temperatures in a mixed aqueous/organic solvent [Bicknell, R., & Waley, S.G. (1985) Biochemistry 24, 6876-6887]. In addition, the branched kinetic pathway observed with the zinc(II) and cobalt(II) beta-lactamase II at subzero temperatures has been shown to occur with the cobalt(II)-substituted enzyme in aqueous solution at above-zero temperatures; thus, at pH 6.0 and 3 degrees C, the rate and equilibrium constants are readily determined for the reaction scheme: (Formula: see text). A third transient intermediate (called ES*) was found to precede ES1 in the pre-steady-state time period. The identity of the intermediates formed in aqueous solution with those previously observed in the cryostudy confirms that the mechanism is not changed either by the presence of an organic cosolvent or by subzero temperatures. Further characterization of ES1 and the steady-state intermediate ES2 at subzero temperatures, where their lifetime may be extended for up to several hours, has involved circular and magnetic circular dichroic studies. The magnetic circular dichroic spectra identify changes in the coordination sphere of the active-site metal during catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The bacteriorhodopsin photocycle contains more than five spectrally distinct intermediates, and the complexity of their interconversions has precluded a rigorous solution of the kinetics. A representation of the photocycle of mutated D96N bacteriorhodopsin near neutral pH was given earlier (Váró, G., and J. K. Lanyi. 1991. Biochemistry. 30:5008-5015) as BRhv-->K<==>L<==>M1-->M2--> BR. Here we have reduced a set of time-resolved difference spectra for this simpler system to three base spectra, each assumed to consist of an unknown mixture of the pure K, L, and M difference spectra represented by a 3 x 3 matrix of concentration values between 0 and 1. After generating all allowed sets of spectra for K, L, and M (i.e., M1 + M2) at a 1:50 resolution of the matrix elements, invalid solutions were eliminated progressively in a search based on what is expected, empirically and from the theory of polyene excited states, for rhodopsin spectra. Significantly, the average matrix values changed little after the first and simplest of the search criteria that disallowed negative absorptions and more than one maximum for the M intermediate. We conclude from the statistics that during the search the solutions strongly converged into a narrow region of the multidimensional space of the concentration matrix. The data at three temperatures between 5 and 25 degrees C yielded a single set of spectra for K, L, and M; their fits are consistent with the earlier derived photocycle model for the D96N protein.  相似文献   

5.
The binding of 6-nitro-L-tryptophan to trp aporepressor and human serum albumin has been examined by visible difference spectroscopy and circular dichroism. 6-Nitro-L-tryptophan, prepared by nitration of L-tryptophan with nitric acid in glacial acetic acid, exhibits a visible and near-uv absorption spectrum with lambda max at about 330 nm (epsilon = 7 X 10(3) M-1 cm-1) and a shoulder near 380 nm in H2O. In the presence of trp aporepressor, the visible absorption intensity is sharply diminished. Visible difference spectral titration data give KD = 1.27 X 10(-4) M and n = 0.95 per subunit at 25 degrees C. While 6-nitro-L-tryptophan exhibits no significant circular dichroism between 300 and 500 nm, the complex with trp aporepressor exhibits strong circular dichroism signals, with a negative maximum at 386 nm (delta epsilon = -7.5 M-1 cm-1) and a positive maximum at 310 nm (delta epsilon = +6 M-1 cm-1). Circular dichroism titration data give KD = 1.69 X 10(-4) M and n = 0.90 per subunit at 25 degrees C. The KD values determined spectroscopically are in excellent agreement with that determined by equilibrium dialysis, KD = 1.5 X 10(-4) M at 25 degrees C. In the presence of human serum albumin, the spectrum of 6-nitro-L-tryptophan exhibits a blue shift and an increase in absorption intensity; similar changes are observed in solvents of low dielectric contrast such as 80% aqueous dioxane. Visible difference spectral titration data give KD = 8.0 X 10(-5) M and n = 0.95 for human serum albumin. The complex of 6-nitro-L-tryptophan with human serum albumin exhibits a strong positive circular dichroism maximum at 380 nm (delta epsilon = +9.8 M-1 cm-1) with a shoulder at 310-320 nm. Circular dichroism titration data give KD = 6.4 X 10(-5) M and n = 0.83, in good agreement with the visible difference spectral results. Taken together, our results demonstrate the utility of 6-nitro-L-tryptophan as a spectroscopic probe for tryptophan-binding proteins.  相似文献   

6.
Simultaneously measured low temperature absorption and circular dichroic spectra are presented for different intermediates of the bacteriorhodopsin photocycle in suspension and hydrated film of purple membranes. The data for the L intermediate are in accord with excitonic interpretation of the visible part of the circular dichroic spectrum, suggesting that no large scale structural change of the purple membrane affecting its crystalline structure happens during the L formation. The structure of the membrane, which is disrupted in the M state, is recovered when M is illuminated with blue light at low temperature.  相似文献   

7.
The interaction of bisulfite with milk xanthine oxidase   总被引:1,自引:0,他引:1  
Bisulfite ion competitively inhibits xanthine oxidase activity. The ability of HSO3- to bind at the molybdenum center is controlled by pH due to a pKa of 6.91 for SO3(2-)/HSO3-. The Kd for the enzyme-bisulfite complex is 4.5 x 10(-5) M at pH 7.0 and 25 degrees C. The relative magnitude of extinction changes in the optical absorption spectra, the number of inhibitor ions reversibly bound, and the number of electrons required for complete bleaching of the visible spectrum of the milk xanthine oxidase-HSO3- complex were all dependent on the percentage of fully functional xanthine oxidase. Binding of HSO3- causes perturbations of the visible spectrum: the maximum extinction changes at 320 and 422 nm were calculated to be -4300 and -2150 M-1 cm-1, respectively. The stoichiometry of reversible binding was determined to be one molecule of HSO3-/active molybdenum center. Combined optical and EPR analyses of anaerobic dithionite titrations revealed that the relative redox potentials of the Mo6+/5+ and Mo5+/4+ couples decreased by approximately 35 and 45 mV on binding bisulfite, respectively. The finding that bisulfite has a profound effect on the redox properties of xanthine oxidase necessitates a re-evaluation of dithionite titrations previously carried out with this enzyme at neutral and low pH values since bisulfite produced as an oxidation product of dithionite binds to the enzyme during the course of titration.  相似文献   

8.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25 degrees C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol 49, 421--429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm. The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0--2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6--4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively. Absorption spectra at 25 degrees C and at --196 degrees C of the water-soluble chlorophyll proteins were compared by the curve-fitting methods. The component bands at --196 degrees C were blue-shifted by 0.8--4.1 nm and narrower in half widths as compared to those at 25 degrees C.  相似文献   

9.
Light-induced isomerization leads to orientational changes of the retinylidene chromophore of bacteriorhodopsin in its binding pocket. The chromophore reorientation has been characterized by the following methods: polarized absorption spectroscopy in the visible, UV and IR; polarized resonance Raman scattering; solid-state deuterium nuclear magnetic resonance; neutron and X-ray diffraction. Most of these experiments were performed at low temperatures with bacteriorhodopsin trapped in one or a mixture of intermediates. Time-resolved measurements at room temperature with bacteriorhodopsin in aqueous suspension can currently only be carried out with transient polarized absorption spectroscopy in the visible. The results obtained to date for the initial state and the K, L and M intermediates are presented and discussed. The most extensive data are available for the M intermediate, which plays an essential role in the function of bacteriorhodopsin. For this intermediate the various methods lead to a consistent picture: the curved all-trans polyene chain in the initial state straightens out in the M intermediate (13-cis) and the chain segment between C(5) and C(13) tilts upwards in the direction of the cytoplasmic surface. The kink at C(13) allows the positions of beta-ionone ring and Schiff base nitrogen to remain approximately fixed.  相似文献   

10.
Site-specific mutagenesis in combination with low temperature UV/visible difference spectroscopy has been used to investigate the role of individual amino acids in the structure and function of bacteriorhodopsin (bR). We examined the effects of eight single amino acid substitutions, all in the putative F helix, on the absorption of bR as well as formation of the K and M intermediates. Both the absorbance spectra and the photocycle difference spectra of Escherichia coli expressed bR as well as the mutants S183A, P186G, and E194Q all closely resembled the corresponding purple membrane spectra. In contrast the Pro-186----Leu substitution resulted in the loss of the normal photocycle and a large blue shift in the bR state lambda max. Thus, Pro-186 appears to play a critical role in maintaining the normal protein-chromophore interactions, although the pyrrolidine ring is not essential since proline could be replaced by glycine at this position. The mutants W182F, W189F, and S193A did not appear to be directly involved in the bathochromic shift of bR since they all had lambda max's close to that of purple membrane and produced intermediates similar to K and M. However, alterations in the UV and visible difference spectra as well as the appearance of some irreversibility in the photoreactions indicate that these mutants have altered protein-chromophore interactions during the photocycle. Unlike the other mutants examined, Y185F exhibited a red-shifted form of bR and K raising the possibility that Tyr-185 is directly involved in color regulation. In addition, UV difference peaks previously associated with a tyrosine deprotonation were absent in Y185F indicating that Tyr-185 undergoes protonation changes during the photocycle in agreement with recent Fourier transform infrared difference measurements (Braiman, M.S., Mogi, T., Stern, L. J., Hackett, N., Chao, B. H., Khorana, H.G., and Rothschild, K. J. (1988) Proteins: Structure, Function, and Genetics 3, 219-229). Our results suggest that Trp-182, Tyr-185, Pro-186, Trp-189, and Ser-193, all of which are within a 100 degrees segment of the F helix, are part of a retinal-binding pocket.  相似文献   

11.
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The M?ssbauer spectra of MoFe-protein of Azotobacter vinelandii, as isolated under dithionite and taken at temperatures from 125 K to 175 K, are the sums of four resolved quadrupole doublets. Our results indicate that the currently accepted interpretation of these doublets can be questioned. Our data reduction method converts the M?ssbauer transmission spectra to source lineshape deconvolved absorption spectra linear in iron. We used these absorption spectra to determine the stoichiometry of the Fe clusters in MoFe-protein and we obtained much better fits if we assumed that there are four iron atoms in the 'Fe2+, doublet, two iron atoms in the 'S' doublet, twelve iron atoms in the 'D' doublet and sixteen iron atoms in the 'M' doublet. Therefore we propose that the MoFe-cofactor contains one molybdenum and eight iron atoms ('M'). We also argue that none of the previous M?ssbauer spectroscopic studies have been performed on the highest-activity preparation now obtainable, nor has there been any study to prove that the M?ssbauer spectra are independent of activity. We consider that the M?ssbauer spectroscopic studies of the MoFe-protein of nitrogenase are a re-opened and unsolved problem.  相似文献   

13.
Photochemical studies were conducted on human rhodopsin at 20 degrees C to characterize the intermediates which precede the formation of metarhodopsin II, the trigger for the enzyme cascade mechanism of visual transduction. Human rhodopsin was prepared from eyes which had previously been used for corneal donations. Time resolved absorption spectra collected from 10(-8) to 10(-6) s after photolysis of human rhodopsin in detergent suspensions displayed biexponential decay kinetics. The apparent lifetimes obtained from the data are 65 +/- 20 and 292 +/- 25 ns, almost a factor of 2 slower than the corresponding rates in bovine rhodopsin. The spectra can be fit well using a model in which human bathorhodopsin decays toward equilibrium with a blue-shifted intermediate (BSI) which then decays to lumirhodopsin. Spectra and kinetic rate constants were determined for all these intermediates using a global analysis which showed that the spectra of the human intermediates are remarkably similar to bovine intermediates. Microscopic rate constants derived from this model are 7.4 x 10(6) s-1 for bathorhodopsin decay and 7.5 x 10(6) s-1 and 4.6 x 10(6) s-1 for the forward and reverse reactions of BSI, respectively. Decay of lumirhodopsin to later intermediates was studied from 10(-6) to 10(-1) s after photolysis of rhodopsin in human disk membrane suspensions. The human metarhodopsin I in equilibrium metarhodopsin II equilibrium appears to be more forward shifted than in comparable bovine studies.  相似文献   

14.
Su JH  Havelius KG  Ho FM  Han G  Mamedov F  Styring S 《Biochemistry》2007,46(37):10703-10712
The interaction EPR split signals from photosystem II (PSII) have been reported from the S0, S1, and S3 states. The signals are induced by illumination at cryogenic temperatures and are proposed to reflect the magnetic interaction between YZ* and the Mn4Ca cluster. We have investigated the formation spectra of these split EPR signals induced in PSII enriched membranes at 5 K using monochromatic laser light from 400 to 900 nm. We found that the formation spectra of the split S0, split S1, and split S3 EPR signals were quite similar, but not identical, between 400 and 690 nm, with maximum formation at 550 nm. The major deviations were found between 440 and 480 nm and between 580 and 680 nm. In the regions around 460 and 680 nm the amplitudes of the formation spectra were 25-50% of that at 550 nm. A similar formation spectrum was found for the S2-state multiline EPR signal induced at 0 degrees C. In general, the formation spectra of these signals in the visible region resemble the reciprocal of the absorption spectra of our PSII membranes. This reflects the high chlorophyll concentration necessary for the EPR measurements which mask the spectral properties of other absorbing species. No split signal formation was found by the application of infrared laser illumination between 730 and 900 nm from PSII in the S0 and S1 states. However, when such illumination was applied to PSII membranes poised in the S3 state, formation of the split S3 EPR signal was observed with maximum formation at 740 nm. The quantum yield was much less than in the visible region, but the application of intensive illumination at 830 nm resulted in accumulation of the signal to an amplitude comparable to that obtained with illumination with visible light. The split S3 EPR signal induced by NIR light was much more stable at 5 K (no observable decay within 60 min) than the split S3 signal induced by visible light (50% of the signal decayed within 30 min). The split S3 signals induced by each of these light regimes showed the same EPR spectral features and microwave power saturation properties, indicating that illumination of PSII in the S3 state by visible light or by NIR light produces a similar configuration of YZ* and the Mn4Ca cluster.  相似文献   

15.
The bacteriorhodopsin emission lifetime at 77 degrees K has been obtained for different regions of the emission spectrum with single-pulse excitation. The data under all conditions yield a lifetime of 60 +/- 15 ps. Intensity effects on this lifetime have been ruled out by studying the relative emission amplitude as a function of the excitation pulse energy. We relate our lifetime to previously reported values at other temperatures by studying the relative emission quantum efficiency as a function of temperature. These variable temperature studies have indicated that an excited state with an emission maximum at 670 nm begins to contribute to the spectrum as the temperature is lowered. Within our experimental error the picosecond data seem to suggest that this new emission may arise from a minimum of the same electronic state responsible for the 77 degrees K emission at 720 nm. A correlation is noted between a 1.0-ps formation time observed in absorption by Ippen et al. (Ippen, E.P., C.V. Shank, A. Lewis, and M.A. Marcus. 1978. Subpicosecond spectroscopy of bacteriorhodopsin. Science [wash. D.C.]. 200:1279-1281 and a time extrapolated from relative quantum efficiency measurements and the 77 degrees K fluorescence lifetime that we report.  相似文献   

16.
The sonicated dispersion of egg lecithin (phosphatidylcholine) in water forms 1:1 molecular complex with iodine, when its concentration is above 1.6 X 10(-5) M. The thermodynamic and spectrophotometric properties of this complex have been determined. The thermodynamic values are: K (25 degrees C) = 1.6 X 10(3) 1 X mol-1, delta G degrees = -18.4 KJ X mol-1, delta H degrees = -27.4 KJ X mol-1 and delta S degrees = -30.0 J X mol-1 X deg-1. The complex shows two absorption bands: one at 293 nm, which is the charge transfer band and the other at 370 nm, which is the blue shifted visible iodine band at 460 nm in water.  相似文献   

17.
The absorption spectra of solutions of methemoglobin partially saturated with azide were resolved into the best fitting components of two reference spectra (methemoglobin and methemoglobin azide) by a least-squares curve fitting operation. While good fits of sample spectra in terms of reference spectra were obtained as the extreme values of saturation were approached, poor fits were obtained in the middle region of fractional saturation. The distribution of residuals was markedly wavelength dependent, the greatest excursions being obtained at the isoabsorption point in the 0–100% azide difference spectrum of methemoglobin. The results are attributed to chain differences in an uncooperative tetramer.  相似文献   

18.
Laser flash photolysis and low-temperature absorption studies of the photocycle of orthorhombic purple membrane (o-PM) reveal the existence of the same K, L, and M intermediates as found in the native hexagonal purple membrane (h-PM). However, the 0 intermediate is missing in the o-PM. The absorption spectrum of the K intermediate of o-PM is blueshifted by ~15 nm relative to the K intermediate found in the hexagonal purple membrane. The decay relaxation time constants of M in the o-PM are higher by more than an order of magnitude than the corresponding relaxation time constants in the h-PM. Similarly to the h-PM, the decay of M depends on the pulse width of excitation. The time-independent anisotropy factor obtained in photoselection studies of the M intermediate demonstrates the complete immobility of bacteriorhodopsin (bR) within the o-PM matrix. The same anisotropy factor of 0.3 obtained for o-PM and for h-PM suggests that in both crystalline lattices the transition moment of the retinal chromophore has similar angles with the plane of the membrane. The dependence of the decay kinetics of M on its occupancy may suggest the existence of kinetic coupling between neighboring bR molecules.  相似文献   

19.
Nonequilibrium conformational states in cytochrome P-450 in the presence and absence of substrates formed by reduction at subzero temperatures with hydrates electrons were obtained and characterized by their absorption spectra. Different absorption spectra between the relaxed (298 K) and the non-relaxed enzyme forms (77 K) indicate conformational changes proceeding in the relaxed form after reduction of the heme iron which lead to altered interactions between the active centre and its environment in the protein. The two maxima of the nonequilibrium form of cytochrome P-450 without substrate in the visible absorption spectrum (alpha-band, beta-band) and the ratio of their intensities indicate the low-spin character of the heme iron. These spectral properties give evidence for a reduced cytochrome P-450 with two heme-linked axial ligands.  相似文献   

20.
The visible circular dichroism (CD) spectrum of an R-phycoerythrin (Porphyra tenera) is composed of several positive bands. The protein in aqueous buffer very slowly exhibits changes in the CD spectrum of its chromophores, a band at 489 nm undergoes an increase in intensity and a red shift. When the band reached a 493 nm maximum, the spectrum became very stable. The aggregation state of the protein did not change during this spectral conversion. The chromophore CD spectrum was also obtained in the presence of a low concentration of urea or sodium thiocyanate, and the identical change in the CD was noted, but the change was much faster. The visible absorption and CD in the far UV spectra were unaffected by urea. Unchanged visible absorption and protein secondary structure (61% alpha helix) contradicted by comparatively salient alterations in the visible CD spectra suggested very subtle structural changes are influencing some of the chromophores. For a second R-phycoerythrin (Gastroclonium coulteri), the CD of the chromophores had a negative band on the blue edge of the spectrum. This is the first negative CD band observed for any R-phycoerythrin. Treatment of this protein with low concentrations of urea produced a change in the visible CD with the negative band being completely converted to a positive band. Fluorescence studies showed that the treatment by urea did not affect energy migration. Deconvolution of the CD spectra were used to monitor the chromophores. The results demonstrated that the same aggregate of each R-phycoerythrin could exist in two conformations, and this is a novel finding for any red algal or cyanobacterial biliprotein. The two forms of each protein would differ in tertiary structure, but retain the same secondary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号