首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cardiovascular diseases are the number one cause of death globally and are projected to remain the single leading cause of death. Treatment options abounds, although efficacy is limited. Recent studies attribute discrete and ephemeral benefits to adult stem cell therapies, indicating the urge to improve stem cell based–therapy. In this study, we show that priming mesenchymal stem cells (MSC) towards cardiomyogenic lineage enhances their beneficial effects in vivo as treatment option for acute phase myocardial infarction. MSC were primed using cardiomyogenic media for 4 days, after which peak expression of key cardiomyogenic genes are reached and protein expression of Cx‐43 and sarcomeric α‐actinin are observed. MSC and primed MSC (pMSC) were characterized in vitro and used to treat infarcted rats immediately after left anterior descending (LAD) occlusion. Echocardiography analysis indicated that MSC‐treated myocardium presented discrete improvement in function, but it also showed that pMSC treatment lead to superior beneficial results, compared with undifferentiated MSC. Seven days after cell injection, MSC and pMSC could still be detected in the myocardium. Connexin‐43 expression was quantified through immunoblotting, and was superior in pMSC, indicating that this could be a possible explanation for the superior performance of pMSC therapy.  相似文献   

2.
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.  相似文献   

3.
4.
The term mesenchymal stem cell (MSCs) was adopted in the 1990s to describe a population of bone-marrow-derived cells that demonstrated the capacity for tri-lineage differentiation at a clonal level. Research conducted during the ensuing decades has demonstrated that MSCs fulfill many functions in addition to connective tissue progenitors including contributing to the HSC niche and regulating the function of immune effector cells of both the innate and adaptive immune system. Despite these advances, fundamental aspects of MSC biology remain indeterminate. For example, the embryonic origin of MSCs and their niche in vivo remains a highly debated topic. More importantly, the mechanisms that regulate self-renewal and lineage specification have also been largely unexplored. The later is significant in that MSC population's exhibit considerable donor-to-donor and intra-population heterogeneity but knowledge regarding how different functional attributes of MSCs are specified at the population level is unknown. This poses significant obstacles in research and in efforts to develop clinical manufacturing protocols that reproducibly generate functionally equivalent MSC populations. Herein, I discuss data demonstrating that MSC populations are intrinsically heterogeneous, elaborate on the molecular basis for this heterogeneity, and discuss how heterogeneity impacts clinical manufacturing and the therapeutic potency of MSCs.  相似文献   

5.
Abstract. Objectives: Human amnion is an easy‐to‐obtain novel source of human mesenchymal stem cells, which poses little or no ethical dilemmas. We have previously shown that human amnion‐derived mesenchymal (HAM) cells exhibit certain mesenchymal stem cell‐like characteristics with respect to expression of stem cell markers and differentiation potentials. Materials and methods: In this study, we further characterized HAM cells’ potential for in vivo therapeutic application. Results: Flow cytometric analyses of HAM cells show that they express several stem cell‐related cell surface markers, including CD90, CD105, CD59, CD49d, CD44 and HLA‐ABC, but not CD45, CD34, CD31, CD106 or HLA‐DR. HAM cells at the 10th passage showed normal karyotype. More interestingly, the AbdB‐like HOXA genes HOXA9, HOXA10 and HOXA11 that are expressed in the mesenchyme of the developing female reproductive tract and pregnant uteri are also expressed in HAM cells, suggesting similarities between these two mesenchymal cell types. Progesterone receptor is also highly expressed in HAM cells and expression of genes or proteins in HAM cells could be manipulated with the aid of lentivirus technology or cell‐permeable peptides. To test potentials of HAM cells for in vivo application, we introduced enhanced green fluorescence protein (EGFP)‐expressing HAM cells to mice by intrauterine infusion (into uteri) or by intravenous injection (into the circulation). Presence of EGFP‐expressing cells within the uterine mesenchyme after intrauterine infusion or in lungs after intravenous injection was noted within 1–4 weeks. Conclusions: Collectively, these results suggest that HAM cells are a potential source of mesenchymal stem cells with therapeutic potential.  相似文献   

6.
BACKGROUND: The degree of post-injury inflammation of the damaged area of a spinal cord is the main difference between the natural successful repair in inferior vertebrates and failure in superior vertebrates. The treatment of rats with anti-myelin lymphocytes after experimental spinal cord injury induces their functional recovery. On the other hand, mesenchymal stem cells (MSC) from adult BM implanted in injured areas recover the morphology and function of spinal cord in mammals. The purpose of this study was to determine whether there is a direct relationship between anti-nervous tissue T cells and MSC reparatory properties. METHODS: Circulating autoreactive lymphocytes of patients with spinal cord injuries and amyotrophic lateral sclerosis were isolated and activated in vitro. These cells were cocultured with autologous MSC for 2-15 days. Cocultures of non-selected lymphocytes were used as controls. RESULTS: After 48 h of coculture, MSC adopted a spindle shape with polarization of the cytoplasm that resembled bipolar neurons. Their nuclei diminished the nucleolus number and the chromatin lost its granular appearance. After 15 days of culture the cells developed the typical structure of a neural network. No morphologic changes were observed in control cultures. The differentiated cells reacted positively to tubuline III, GFAP and nestin. No differences were observed between the different patient cell sources. DISCUSSION: We observed that autoreactive cells may induce the transdifferentiation of MSC to neural stem cells. This T-cell-MSC interaction may be a common phenomenon during physiologic nerve tissue repair.  相似文献   

7.
Umbilical cord Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have recently gained considerable attention in the field of regenerative medicine. Their high proliferation rate, differentiation ability into various cell lineages, easy collection procedure, immuno-privileged status, nontumorigenic properties along with minor ethical issues make them an ideal approach for tissue repair. Besides, the number of WJ-MSCs in the umbilical cord samples is high as compared to other sources. Because of these properties, WJ-MSCs have rapidly advanced into clinical trials for the treatment of a wide range of disorders. Therefore, this paper summarized the current preclinical and clinical studies performed to investigate the regenerative potential of WJ-MSCs in neural, myocardial, skin, liver, kidney, cartilage, bone, muscle, and other tissue injuries.  相似文献   

8.
The coronavirus disease 2019 (COVID-19) has been threatening the globe since the end of November 2019. The disease revealed cracks in the health care system as health care providers across the world were left without guidelines on definitive usage of pharmaceutical agents or vaccines. The World Health Organization (WHO) declared COVID-19 as a pandemic on the 11th of March 2020. Individuals with underlying systemic disorders have reported complications, such as cytokine storms, when infected with the virus. As the number of positive cases and the death toll across the globe continue to rise, various researchers have turned to cell based therapy using stem cells to combat COVID-19. The field of stem cells and regenerative medicine has provided a paradigm shift in treating a disease with minimally invasive techniques that provides maximal clinical and functional outcome for patients. With the available evidence of immunomodulatory and immune-privilege actions, mesenchymal stem cells (MSCs) can repair, regenerate and remodulate the native homeostasis of pulmonary parenchyma with improved pulmonary compliance. This article revolves around the usage of novel MSCs therapy for combating COVID-19.  相似文献   

9.
Pelvic organ prolapse(POP) occurs when the pelvic organs(bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. POP affects 25% of all women and results from childbirth injury. For 19% of all women, surgical reconstructive surgery is required for treatment, often augmented with surgical mesh. The surgical treatment fails in up to 30% of cases or results in adverse effects, such as pain and mesh erosion into the bladder, bowel or vagina. Due to these complications the Food and Drug Administration cautioned against the use of vaginal mesh and several major brands have been recently been withdrawn from market. In this review we will discuss new cell-based approaches being developed for the treatment of POP. Several cell types have been investigated in animal models, including a new source of mesenchymal stem/stromal cells(MSC) derived from human endometrium. The unique characteristics of endometrial MSC, methods for their isolation and purification and steps towards their development for good manufacturing practice production will be described. Animal models that could be used to examine the potential for this approach will also be discussed as will a rodent model showing promise in developing an endometrial MSC-based therapy for POP. The development of a preclinical large animal model for assessing tissue engineering constructs for treating POP will also be mentioned.  相似文献   

10.
A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self-renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell-based strategies owing to their intrinsic capacity to self-renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy.  相似文献   

11.
Mesenchymal stem cell transplantation (MSCT) has been recognized as a potent and promising approach to achieve immunomodulation and tissue regeneration, but the mechanisms of how MSCs exert therapeutic effects remain to be elucidated. Increasing evidence suggests that transplanted MSCs only briefly remain viable in recipients, after which they undergo apoptosis in the host circulation or in engrafted tissues. Intriguingly, apoptosis of infused MSCs has been revealed to be indispensable for their therapeutic efficacy, while recipient cells can also develop apoptosis as a beneficial response in restoring systemic and local tissue homeostasis. It is notable that apoptotic cells produce apoptotic extracellular vesicles (apoEVs), traditionally known as apoptotic bodies (apoBDs), which possess characterized miRnomes and proteomes that contribute to their specialized function and to intercellular communication. Importantly, it has been demonstrated that the impact of apoEVs is long-lasting in health and disease contexts, and they critically mediate the efficacy of MSCT. In this review, we summarize the emerging understanding of apoptosis in mediating MSCT, highlighting the potential of apoEVs as cell-free therapeutics.Subject terms: Apoptosis, Stem-cell research, Translational research  相似文献   

12.
Ex vivo expansion and manipulation of human mesenchymal stem cells are important approaches to immunoregulatory and regenerative cell therapies. Although these cells show great potential for use, issues relating to their overall nature emerge as problems in the field. The need for extensive cell quantity amplification in vitro to obtain sufficient cell numbers for use, poses a risk of accumulating genetic and epigenetic abnormalities that could lead to sporadic malignant cell transformation. In this study, we have examined human mesenchymal stem cells derived from bone marrow, over extended culture time, using cytogenetic analyses, mixed lymphocyte reactions, proteomics and gene expression assays to determine whether the cultures would retain their potential for use in subsequent passages. Results indicate that in vitro cultures of these cells demonstrated chromosome variability after passage 4, but their immunomodulatory functions and differentiation capacity were maintained. At the molecular level, changes were observed from passage 5 on, indicating initiation of differentiation. Together, these results lead to the hypothesis that human mesenchymal stem cells cultures can be used successfully in cell therapy up to passage 4. However, use of cells from higher passages would have to be analysed case by case.  相似文献   

13.
间充质干细胞(MSCs)是一种具有自我更新和多向分化潜能的成体干细胞,存在于骨髓、脂肪组织、脐血及多种胎儿组织.它可分泌多种细胞因子及生长因子,促进造血干细胞(HSC)的增殖与分化.MSCs还具有免疫调节、抗炎和组织修复作用,可减轻移植物抗宿主病(GVHD)及其他移植相关并发症.  相似文献   

14.
15.
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

16.
We investigated the encapsulation of BMP-2 gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of bone morphogenic protein-2 (BMP-2) to induce bone formation. An electrostatic droplet generator was employed to produce APA microcapsules containing encapsulated beta-gal or BMP-2 gene-transfected bone marrow-derived MSCs. We found that X-gal staining was still positive 28 days after encapsulation. Encapsulated BMP-2 gene-transfected cells were capable of constitutive delivery of BMP-2 proteins for at least 30 days. The encapsulated BMP-2 gene-transfected MSCs or the encapsulated non-gene transfer MSCs (control group) were cocultured with the undifferentiated MSCs. The gene products from the encapsulated BMP-2 cells could induce the undifferentiated MSCs to become osteoblasts that had higher alkaline phosphatase (ALP) activity than those in the control group (p<0.05). The APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Mixed lymphocyte reaction also indicates that the APA microcapsules could prevent the encapsulated BMP-2 gene-transfected MSCs from initiating the cellular immune response. These results demonstrated that the nonautologous BMP-2 gene-transfected stem cells are of potential utility for enhancement of bone repair and bone regeneration in vivo.  相似文献   

17.
Mesenchymal stem cells (MSCs) are multipotent cells found in a variety of tissues in the body, including but not limited to bone marrow, adipose tissue, umbilical cord, and umbilical cord blood. Given their immunomodulatory effect and ability to be readily isolated from several tissues, they have great potential to be used as a therapeutic agent in a variety of immune-mediated disorders. Atopic dermatitis (AD) is a persistent and relapsing immune skin condition that has recently become more common in several species such as humans, canines, equines, and felines. The use of MSCs to treat AD has piqued the great interest of researchers in recent years. In this article, we review the recent understanding of AD pathology and advances in preclinical and clinical studies of MSCs, MSCs-derived conditional media and exosomes as therapeutic tools to treat AD.  相似文献   

18.
Mesenchymal stem cells(MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

19.
Pneumonia is the inflammation of the lungs and it is the world’s leading cause of death for children under 5 years of age.The latest coronavirus disease 2019(COVID-19)virus is a prominent culprit to severe pneumonia.With the pandemic running rampant for the past year,more than 1590000 deaths has occurred worldwide up to December 2020 and are substantially attributable to severe pneumonia and induced cytokine storm.Effective therapeutic approaches in addition to the vaccines and drugs under development are hence greatly sought after.Therapies harnessing stem cells and their derivatives have been established by basic research for their versatile capacity to specifically inhibit inflammation due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing antibacterial/antiviral immunity,thus significantly alleviating the severe clinical conditions of pneumonia.In recent clinical trials,mesenchymal stem cells have shown effectiveness in reducing COVID-19-associated pneumonia morbidity and mortality;positioning these cells as worthy candidates for combating one of the greatest challenges of our time and shedding light on their prospects as a nextgeneration therapy to counter future challenges.  相似文献   

20.
Dear Editor, Stem cell therapy holds enormous and revolutionary promise to treat various age-related diseases,such as diabetes,heart failure,and Parkinson's dis...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号