首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soybean membrane preparations specifically bound [14C]mycolaminaran, a branched β-1,3-glucan produced by Phytophthora sp. which elicits production of the phytoalexin glyceollin in soybean tissues. A Scatchard plot of the binding data disclosed the presence of a single affinity class of binding sites with a Kd value of 11.5 micromolar for the glucan. To assess the physiologic importance of mycolaminaran binding in phytoalexin elicitation, several derivatives of mycolaminaran were prepared. Reduced mycolaminaran had slightly greater elicitor activity and binding affinity than the native substance, while periodinated mycolaminaran was virtually devoid of either elicitor activity orbinding capability. Phosphorylated mycolaminaran, on the other hand, gave values for both elicitor activity and membrane binding which were intermediate between the native and periodinated preparations. No other tested carbohydrates competed with the binding of [14C]mycolaminaran. Soybean membrane preparations contained β-1,3-endoglucanase activity that degraded mycolaminaran and reduced both its efficiency as a phytoalexin elicitor and its membrane binding at temperatures above 0°C. Once [14C]mycolaminaran bound to membranes, however, it was not appreciably susceptible to glucanase attack and could not be displaced with excess unlabeled ligand. Taken collectively, the observations suggest that the membrane binding sites are mycolaminaran-specific receptors which are physiologically involved in the initiation of phytoalexin production in soybean cotyledons. Because the binding of mycolaminaran to membranes was abolished by heat and proteolytic enzymes, the receptor is probably a protein(s) or glycoprotein(s).  相似文献   

2.
A glucan elicitor from cell walls of the fungus Phytophthora megasperma f. sp. glycinea, a pathogen of soybean (Glycine max), induced large and rapid increases in the activities of enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, and of the flavonoid pathway, acetyl-CoA carboxylase and chalcone synthase, in suspension-cultured soybean cells. The changes in phenylalanine ammonia-lyase and chalcone synthase activities were correlated with corresponding changes in the mRNA activities encoding these enzymes, as determined by enzyme synthesis in vitro in a mRNA-dependent reticulocyte lysate. The time courses of the elicitor-induced changes in mRNA activities for both enzymes were very similar with respect to each other. Following the onset of induction, the two mRNA activities increased significantly at 3 h, reached highest levels at 5 to 7 h, and subsequently returned to low values at 10 h. Similar degrees of induction of mRNA activities and of the catalytic activities of phenylalanine ammonia-lyase and chalcone synthase were observed in response to three diverse microbial compounds, the glucan elicitor from P. megasperma, xanthan, an extracellular polysaccharide from Xanthomonas campestris, and endopolygalacturonase from Aspergillus niger. However, whereas the glucan elicitor induced the accumulation of large amounts of the phytoalexin, glyceollin, in soybean cells, endopolygalacturonase induced only low, albeit significant, amounts; xanthan did not enhance glyceollin accumulation under the conditions of this study. This result might imply that enzymes other than phenylalanine ammonia-lyase or chalcone synthase exert an important regulatory function in phytoalexin synthesis in soybean cells.  相似文献   

3.
Farmer EE 《Plant physiology》1985,78(2):338-342
Soybean (Glycine max L.) cells cultured in B5 medium produce extremely low amounts of lignin. However, modification in the growth medium, by lowering the concentration of NO3 and PO2−4, results in the lignification of these cells without affecting levels of cell wall-esterified 4-coumaric and ferulic acid. The production of an extracellular, macromolecular complex by the cultured soybean cells (Moore TS Jr 1973 Plant Physiol 51: 529-536) allows a rapid, nondestructive solubilization of the lignin which can be estimated by reaction with phloroglucinol in free solution. This system has been used to study the effects of fungal elicitor on the synthesis of lignin in soybean cells. The inclusion of very low levels of an elicitor fraction from the cell walls of Phytophthora megasperma in the medium in which lignification of the soybean cells occurs suppressed both the accumulation of extracellular lignin and phloroglucinol staining of the cell walls without affecting the levels of bound hydroxycinnamic acids. The activity profiles of phenylalanine ammonia-lyase (EC 4.3.1.5) and isoenzymes of 4-coumarate:CoA ligase (EC 6.2.1.12) were compared in lignifying and elicitor-treated cell cultures as was the activity of chalcone synthase, an enzyme of flavonoid biosynthesis. The measured activities of these enzymes in cell cultures treated with elicitor were considerably lower than in untreated cells.  相似文献   

4.
The extent of induction of some metabolic activities in cultured parsley cells (Petroselinum crispum) by an elicitor preparation from Phytophthora megasperma f. sp. glycinea varied with the growth stage of the cell culture. On the basis of cell fresh weight, the induction of phytoalexin accumulation was high until cell mass reached a maximum, and then declined to a low level which was indistinguishable from a level caused by an endogenous mechanism operating at this late growth stage. The induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase activities by the elicitor showed a high degree of coordination and a sharp maximum preceding the stage of maximal cell mass. 1,3--Glucanase activity was induced to about the same level throughout all growth stages, with a large contribution by an endogenous mechanism at late stages.Abbreviations PAL Phenylalanine ammonia-lyase (EC 4.3.1.5) - 4CL 4-Coumarate:CoA ligase (EC 6.2.1.12)  相似文献   

5.
A putative receptor protein for a hepta-beta-glucoside phytoalexin elicitor was identified by photoaffinity labeling of detergent-solubilized proteins from soybean root membranes. Incubation of partially purified beta-glucan-binding proteins with a photolabile 125I-labeled 2-(4-azidophenyl)ethyl-amino conjugate of the heptaglucoside elicitor, followed by irradiation with ultraviolet light (366 nm) resulted in specific labeling of a 70-kDa band in SDS/PAGE. Half-maximal inhibition of the 125I-labeling of the protein band by underivatized hepta-beta-glucoside was achieved by 15 nM heptaglucoside. Analysis of the affinity of radiolabel incorporation into the protein by ligand-saturation experiments, gave an apparent Kd value of 3 nM, in full agreement with the results from radioligand-binding studies. Good correlation was also observed between the amount of radiolabel incorporated into the protein and the binding activity of the fractions obtained at different stages in the purification of heptaglucoside-binding activity. Photoaffinity labeling of proteins purified by glucan-affinity chromatography showed the 70-kDa band as the main component along with weak 125I-labeling of a 100-kDa band. The 70-kDa band was also the major protein visualized by silver staining after SDS/PAGE of this fraction, suggesting that it is the predominant form of the heptaglucoside-binding proteins in detergent-solubilized soybean membranes.  相似文献   

6.
The glucan elicitor from cell walls of the fungal pathogen, Phytophthora megasperma f. sp. glycinea, induced rapid but transient increases in enzyme activities of general phenylpropanoid metabolism (phenylalanine ammonia-lyase and 4-coumarate: CoA ligase) and of the flavonoid pathway (chalcone synthase) in cell suspension cultures of soybean (Glycine max). After transferring cells into fresh medium, two peaks of inducibility for the enzymes by elicitor were observed, one shortly after transfer (stage I), and one at the end of the linear growth phase (stage II). Only one of the two isoenzymes of 4-coumarate: CoA ligase (isoenzyme 2), for which a specific involvement in flavonoid biosynthesis has been postulated, was affected by the elicitor. For two of the induced enzymes, phenylalanine ammonia-lyase and chalcone synthase, the changes in activity at stage I were shown to be preceded by large changes in their rates of synthesis, as determined by in vivo labelling with [35S] methionine and immunoprecipitation.Abbreviations Pmg Phytophthora megasperma f. sp. glycinea - glyceollin is a term used to designate the 3 isomers which accumulate in challenged soybean tissue (Moesta and Grisebach 1981b)  相似文献   

7.
The patterns of in vivo protein synthesis in soybean cell suspensions were compared by polyacrylamide gel electrophoresis after the cells had been submitted to different stress conditions : treatment with Phytophthora megasperma (Pmg) cell wall elicitors, 2,4-D starvation and heat shock (HS) temperatures. Changes in protein synthesis patterns induced after elicitation of cell suspensions or after infection of soybean hypocotyls by Pmg were found to be similar to changes brought about by auxin starvation of the cells. Changes common to both stress situations involve a prominent 17 kDa peptide family and 27, 29, 35 and about 45 kDa peptides. Moreover, defense reactions, i.e. glyceollin accumulation and synthesis of chalcone synthase (CHS) were also strongly stimulated in auxin-starved cells. On the contrary, although characteristic sets of low molecular weight heat shock (HS) proteins were synthesized by cells grown at 37°C, no clear similarity was observed with peptides characteristic of auxin-starved cells.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - Pmg Phytophthora megasperma Drechs f.sp.glycinea - HS heat shock - PR pathogenesis-related - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - IEF isoelectrofocusing - iP isoelectric point - kDa kilodalton - P17 17 kDa peptide group of soybean cells cultured in vitro - CHS chalcone synthase  相似文献   

8.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

9.
Soybean cell cultures were challenged either by glucan elicitor from Phytophthora megasperma f.sp. glycinea or by osmotic stress (0.4 M glucose). Osmotic stress induced production of a microsomal NADPH-dependent flavone synthase (flavone synthase II) which catalyses conversion of (2S)-naringenin to apigenin. In one of our cell-lines this enzyme activity was not detected either in unchallenged cells or in cells treated with glucan elicitor. Inducibility of flavone synthase II by 0.4 M glucose was highest at the end of the linear growth phase. Changes in the activities of a number of other enzymes were determined after treatment of the cells with elicitor or 0.4 M glucose. The activities of phenylalanine ammonialyase, cinnamate 4-hydroxylase, chalcone synthase and dihydroxypterocarpan 6a-hydroxylase all increased with elicitor and with osmoticum, albeit to a different degree. The rise in enzyme activity occurred later with osmoticum than with elicitor. The prenyltransferase involved in glyceollin synthesis was induced strongly by elicitor but only very weakly by osmoticum, whereas isoflavone synthase and NADPH: cytochrome-c reductase were only induced by elicitor. The activity of glucose-6-phosphate dehydrogenase did not change with elicitor or with osmoticum. Different product patterns were also obtained: whereas with elicitor, glyceollin I was the major product, intermediates of the glyceollin pathway (7,4-dihydroxyflavanone, trihydroxypterocarpan) accumulated with osmoticum.  相似文献   

10.
Increased atmospheric pollutants including carbon dioxide (CO2) and nitric oxide (NO) have a large impact on vegetation, with detrimental or beneficial influences on plant growth and metabolism. Here, we evaluated the effect of an elevated CO2 atmosphere on the production of soybean defensive secondary chemicals induced by NO and a fungal elicitor. We hypothesized that an excess of carbon may alter the production of specific flavonoids that were previously shown to be induced by NO in soybean cotyledons. Pots containing soybean seeds (Glycine max [L.] Merr.) were submitted to 380 and 760 μmol mol?1 of atmospheric CO2 in open-top chambers. After nine days, plantlets grown under these conditions were assessed for biochemical and physiological parameters. Defense-related flavonoids were evaluated in detached cotyledon diffusates elicited with two different NO donors and with the β-glucan elicitor from Phytophthora sojae. A CO2-enriched atmosphere stimulated initial growth, photosynthetic assimilation, and an altered C/N ratio in soybean plantlets resulting in allocation of precursors into different branches of the phenylpropanoid pathway in the cotyledons. Under elevated CO2, the biotic elicitor caused accumulation of phytoalexins (glyceollins) as the natural end products of the phenylpropanoid pathway. In contrast, elevated CO2 combined with NO resulted in an increase of intermediates and diverted end products (daidzein—127%, coumestrol—93%, genistein—93%, luteolin—89% and apigenin—238%) with a concomitant increase of 1.5–3.0 times in the activity of enzymes related to their biosynthetic routes. These observations point to changes in the pool of defense-related flavonoids that are related to increased carbon availability in soybeans. This may alter the responsiveness of soybean plants to pathogens when they are grown in CO2 atmospheric concentrations close to those predicted for the upcoming several decades.  相似文献   

11.
作者旨在阐明真菌激发子对桦褐孔菌多酚积累的影响。以摇瓶法培养桦褐孔菌,在其培养液中加入真菌激发子和一氧化氮合酶抑制剂氨基胍,观察桦褐孔菌多酚和一氧化氮的积累并测定菌丝体内一氧化氮合酶和苯丙氨酸解氨酶的活性。多酚以Folin-Ciocalteu法测定,一氧化氮的积累量用硝酸还原酶法测定,一氧化氮合酶和苯丙氨酸解氨酶活性均以分光光度计法测定。结果表明,添加45μg/mL的激发子可使桦褐孔菌菌丝体多酚的积累量达到46.5mg/g,显著地高于正常培养的菌丝体多酚积累量34.6mg/g;同时加入45μg/mL的激发子和10mmol/L氨基胍则使菌丝体多酚积累的最高水平降为34.8mg/g。此外,激发子的加入显著促进了一氧化氮的产生并提高了苯丙氨酸解氨酶活性,而这种促进和提升作用为氨基胍所抑制。这表明真菌激发子能显著地提升桦褐孔菌多酚类化合物的积累,而一氧化氮可能是这种提升作用的信号传导分子。  相似文献   

12.
Rat liver mitochondria are able to temporarily lower the steady-state concentration of external Ca2+ after having accumulated a pulse of added Ca2+. This has been attributed to inhibition of a putative -modulated efflux pathway [Bernardi, P. (1984)Biochim. Biophys. Acta 766, 277–282]. On the other hand, the rebounding could be due to stimulation of the uniporter by Ca2+ [Kröner, H. (1987)Biol. Chem. Hoppe-Seyler 369, 149–155]. By measuring unidirectional Ca2+ fluxes, it was found that the uniporter was stimulated during the rebounding peak both under Bernardi's and Kröner's conditions, while no effects on the efflux could be demonstrated. The rate of unidirectional efflux of Ca2+ was not affected by inhibition of the uniporter. It appears likely that the rebounding is due to stimulation of the uniporter rather than inhibition of efflux.  相似文献   

13.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

14.
Chromatofocusing on Mono P proved to be an efficient purification procedure for the NADPH-dependent reductase from soybean (Glycine max L.) cell cultures which acts together with chalcone synthase in the biosynthesis of 2',4',4-trihydroxychalcone (6'-deoxychalcone). By isoelectric focusing the pI of reductase was determined to be 6.3. Addition of pure soybean reductase to cell-free extracts from stimulated cell cultures of parsley and bean (Phaseolus vulgaris) and from young flowers of Dahlia variabilis caused in each case synthesis of 6'-deoxychalcone. When 4-coumaroyl-CoA was replaced by caffeoyl-CoA in the reductase assay, formation of 2',4',3,4-tetrahydrochalcone (butein) was observed. A polyclonal antireductase antiserum was raised in rabbits and proved to be specific in Ouchterlony diffusion experiments, Western blots and immunotitration. The reductase antiserum showed no cross-reactivity with soybean chalcone synthase (CHS). A biotin/[125I]streptavidin system provided a quantitative Western blot for the reductase. Changes in the activities, amounts of protein, and mRNA activities of reductase and CHS were determined after challenge of soybean cell cultures by elicitor (from Phytophthora megasperma f.sp. glycinea or yeast). For both enzymes a pronounced and parallel increase in activity and amounts of protein was observed after elicitor addition with a maximum at about 16 h after challenge. Parallel increases in mRNA activities occurred earlier. The results indicate a parallel induction of de novo synthesis of reductase and CHS which coact in synthesis of 6'-deoxychalcone.  相似文献   

15.
Addition of an elicitor preparation from Verticillium dahliae to soybean or cotton cell suspension cultures induces the formation of the phytoalexins, glycelollin or sesquiterpene aldehydes, respectively. Recent work (PS Low, PF Heinstein 1986 Arch Biochem Biophys 249: 472-479) has shown that the induction of phytoalexin biosynthesis in these cells is preceded by rapid changes in the plant cell membrane which can be conveniently monitored by membrane associated fluorescent probes. Using this elicitation assay, we have found that citrate, a common metabolite of higher plants, acts as a potent inhibitor of elicitation when added prior to treatment with elicitor. The citrate concentration required to obtain a 50% inhibition of the elicitor-induced fluorescence transition in cultured cotton cells was found to be about 2 millimolar, while the concentration of citrate observed to inhibit elicitor-induced sesquiterpene aldehyde formation in the same cell suspensions was also 2 millimolar. Curiously, in the presence of elicitor, citrate at less than ID50 concentrations increased cell mass accumulation significantly above control incubations without elicitor. A similar inhibition of glyceollin formation with an increase in cell mass accumulation was also observed upon addition of 1 to 5 millimolar citrate to soybean cell suspension cultures. The physiological significance of the inhibition by citrate of phytoalexin formation in plant cell suspensions was supported by the observation that a similar inhibition of sesquiterpene aldehyde formation occurs in cotton plantlets elicited by cold shock or V. dahliae stress. The specificity of citrate as an inhibitor of phytoalexin formation was demonstrated by data showing that other di- and tricarboxylic-hydroxy acids did not inhibit, with the exception of malate which inhibited phytoalexin formation in soybean cells with roughly half the potency of citrate. These experiments not only demonstrate that citrate can act as a specific inhibitor of elicitation, but they further confirm the validity of monitoring elicitation and its modulation with fluorescent probes.  相似文献   

16.
Upon stimulation with 10(-6) -10(-3) M ATP, A-431 human epidermoidal carcinoma cells incorporated radioactive calcium from their medium in a temperature-dependent manner. The rate of incorporation of 45Ca2+ was rapid for the initial 5 min, but decreased immediately thereafter. The preincubation of cells for 2 h in medium depleted of both Ca2+ and Mg2+ abolished the ATP-dependent 45Ca2+ incorporation, irrespective of whether or not the subsequent incubation medium contained Mg2+ ions. ATP-dependent 45Ca2+ incorporation could be restored by a second preincubation (1 h) in medium containing 1 mM Mg2+, but no Ca2+. The Mg2+ ions in the second preincubation medium could be replaced by Ca2+, Co2+, or Cu2+ for restoration of such activity. Elevation of inositol trisphosphate (InsP3) was observed in cells depleted of either Ca2+ or Mg2+, but not in cells depleted of both ions. A parallel effect was observed in changes in [Ca2+]i. Since the concentration of cytosolic calcium ions does not change by incubation of cells in medium depleted of and (or) restored with calcium ions, we conclude that either calcium or magnesium ions associated with some cellular component(s) are responsible for production of InsP3, which then supposedly mobilizes Ca2+ and provokes 45Ca2+ influx.  相似文献   

17.
Autophagy is a eukaryotic lysosomal bulk degradation system initiated by cytosolic cargo sequestration in autophagosomes. The Ser/Thr kinase mTOR has been shown to constitute a central role in controlling the initiation of autophagy by integrating multiple nutrient-dependent signaling pathways that crucially involves the activity of PI3K class III to generate the phosphoinositide PI(3)P. Recent reports demonstrate that the increase in cytosolic Ca2+ can induce autophagy by inhibition of mTOR via the CaMKK-α/β-mediated activation of AMPK. Here we demonstrate that Ca2+ signaling can additionally induce autophagy independently of the Ca2+-mediated activation of AMPK. First, by LC3-II protein monitoring in the absence or presence of lysosomal inhibitors we confirm that the elevation of cytosolic Ca2+ induces autophagosome generation and does not merely block autophagosome degradation. Further, we demonstrate that Ca2+-chelation strongly inhibits autophagy in human, mouse and chicken cells. Strikingly, we found that the PI(3)P-binding protein WIPI-1 (Atg18) responds to the increase of cytosolic Ca2+ by localizing to autophagosomal membranes (WIPI-1 puncta) and that Ca2+-chelation inhibits WIPI-1 puncta formation, although PI(3)P-generation is not generally affected by these Ca2+ flux modifications. Importantly, using AMPK-α1?/?α2?/? MEFs we show that thapsigargin application triggers autophagy in the absence of AMPK and does not involve complete mTOR inhibition, as detected by p70S6K phosphorylation. In addition, STO-609-mediated CaMKK-α/β inhibition decreased the level of thapsigargin-induced autophagy only in AMPK-positive cells. We suggest that apart from reported AMPK-dependent regulation of autophagic degradation, an AMPK-independent pathway triggers Ca2+-mediated autophagy, involving the PI(3)P-effector protein WIPI-1 and LC3.  相似文献   

18.
《Phytochemistry》1986,26(1):51-53
Phosphorylation of soluble proteins obtained from cultured carrot cells was monitored by measuring the incorporation of 32P from [32P]ATP into the trichloroacetic acid insoluble fraction. The reaction was stimulated by Ca2+ and calmodulin, and inhibited by a carrot phytoalexin, 6-methoxymellein. 6-Methoxymellein also inhibited the Ca2+, calmodulin-dependent phosphorylative activation of NAD:quinate oxidoreductase (EC 1.1.1.24) partially purified from the carrot cells. The inhibitory effect of 6-methoxymellein was reduced when the reaction mixture contained a high concentration of calmodulin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号