首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. II. Effect of measles antibody on persistently infected HeLa clonal line persistently infected with incomplete virus. J. Bacteriol. 92:1805-1811. 1966.-The effect of viral antibody on persistent infection of HeLa cells by the Edmonston strain of measles virus was investigated by culturing cells from three persistently infected clones in medium supplemented with human immune globulin. The three infected HeLa clones were isolated from a persistently infected parent line. Two sublines which were grown in the presence of measles antibody developed a nonyielder state, wherein there is no detectable virus infectious for normal HeLa cultures. There is, however, continued synthesis of intracellular viral antigen and formation of viral intracytoplasmic inclusion bodies. The development of a nonyielder state was associated with a marked decrease in the degree of hemadsorption in cultures of both sublines. Further studies of the viral properties of non-yielder HeLa cell populations were made with a clone obtained from one of these sublines by plating under antibody. Persistent infection in this line was characterized by synthesis of incomplete virus even when the cells were cultured thereafter in anti-body-free medium. This was evidenced by (i) failure to recover infectious virus from the clonal population despite continued formation of intracellular viral antigen and viral intracytoplasmic inclusion bodies in a majority of the cells, (ii) the presence of only a few cells with surface viral antigen(s) including hemagglutinin, and (iii) the relatively weak antibody response to viral envelope antigen(s) after injection of cells into guinea pigs.  相似文献   

2.
Stereo images of vesicular stomatitis virus assembly.   总被引:14,自引:12,他引:2       下载免费PDF全文
Viral assembly was studied by viewing platinum replicas of cytoplasmic and outer plasma membrane surfaces of baby hamster kidney cells infected with vesicular stomatitis virus. Replicas of the cytoplasmic surface of the basilar plasma membrane revealed nucleocapsids forming bullet-shaped tight helical coils. The apex of each viral nose cone was anchored to the membrane and was free of uncoiled nucleocapsid, whereas tortuous nucleocapsid was attached to the base of tightly coiled structures. Using immunoelectron microscopy, we identified the nucleocapsid (N) viral protein as a component of both the tight-coil and tortuous nucleocapsids, whereas the matrix (M) protein was found only on tortuous nucleocapsids. The M protein was not found on the membrane. Using immunoreagents specific for the viral glycoprotein (G protein), we found that the amount of G protein per virion varied. The G protein was consistently localized at the apex of viral buds, whereas the density of G protein on the shaft was equivalent to that in the surrounding membrane. These observations suggest that G-protein interaction with the nucleocapsid via its cytoplasmic domain may be necessary for the initiation of viral assembly. Once contact is established, nucleocapsid coiling proceeds with nose cone formation followed by formation of the helical cylinder. M protein may function to induce a nucleocapsid conformation favorable for coiling or may cross-link adjacent turns in the tight coil or both.  相似文献   

3.
Immuno-Electron Microscopy of the Morphogenesis of Mumps Virus   总被引:12,自引:8,他引:4       下载免费PDF全文
The fine structure of mumps virus-infected chick embryo fibroblastic cells was examined sequentially after viral inoculation. Intracytoplasmic nucleoprotein strands, similar to those described for parainfluenza viruses, were detectable in small aggregates between 36 and 48 hr. The peripheral strands of this viral component lie beneath and along an antigenically altered bulging portion of the cell membrane. The outermost strands are consistently parallel to the differentiated segment of the plasma membrane, which is invariably associated with surface projections. As has been found with other myxoviruses, mumps virus replicates by budding from the cell surface. The virus particle, roughly spherical in shape, has a size ranging from 1,000 to 8,000 A. Filamentous forms are rarely observed in the present culture system. Ferritin-conjugated antibody specifically labels the cytoplasmic nucleoprotein, the modified cell membrane, and the virus particle. Intranuclear inclusions of low electron density and morphologically different from those described in measles virus-infected HeLa and amnion cells were observed in the nucleus of several infected cells. Immuno-electron microscopic observations suggest that the nucleoprotein synthesis rate exceeds that of cell membrane differentiation into viral envelope. This difference results in the accumulation of viral nucleoprotein in large intracytoplasmic masses which can be demonstrated by electron microscopy.  相似文献   

4.
Acute peristome edema disease (APED) is a new disease that broke out in cultured sea cucumber along the Shangdong and Liaoning province coasts in China, PR, and has caused a great deal of death in Apostichopus japonicus (Selenka) since 2004. Here we report virus-like particles found in intestine epithelium of sea cucumbers reared in North China. It is the first time that sea cucumbers are reported to be infected by virus. Histological examinations showed that the viral inclusion bodies existed in intestine epithelium cells. Electron microscopic examinations show that the virions were spherical, 80-100nm in diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Detailed studies on the morphogenesis of these viruses found many characteristics previously described for coronaviruses. Virus particles always congregated, and formed a virus vesicle with an encircling membrane. The most obvious cellular pathologic feature is large granular areas of cytoplasm, relatively devoid of organelles. Tubular structures within virus-containing vesicles, nucleocapsid inclusions, and double-membrane vesicles are also found in the cytopathic cells. No rickettsia, chlamydia, bacteria, or other parasitic organisms were found.  相似文献   

5.
The transmembrane association of the measles virus hemagglutinin and hemolysin surface proteins with intracellular viral antigens was studied. Rabbit antisera monospecific for measles virus matrix and nucleocapsid proteins and a human antiserum containing specificities for both the hemagglutinin and hemolysin proteins were used to study the co-capping of these proteins in human Lu 106 cell-line, chronically infected with measles virus. Capping of the surface-associated envelope components was accompanied by co-capping of the matrix and nucleocapsid proteins, the latter being localized mainly within the inclusions. This demonstrated transmembrane communication between surface-associated envelope components and the intracellular measles virus matrix and nucleocapsid proteins. The results demonstrated the existence of a linkage between viral inclusions and viral proteins associated with cell membranes. In the presence of cytochalasin B (1--2 micrograms/ml), co-capping of the matrix protein was unchanged or slightly enhanced, whereas co-capping of the nucleocapsid protein decreased, indicating that actin filaments may mediate the communication between viral nucleocapsids and the cell membrane.  相似文献   

6.
The development of type 2 parainfluenza virus in HeLa and stable human amnion cells was examined by use of antisera labeled with fluorescein and ferritin. Serum containing antibody predominantly to soluble viral antigen gave specific fluorescence which was first detectable in small cytoplasmic foci 8 to 10 hr after initiation of infection. By 20 to 24 hr, when the production of infective virus and hemagglutinin was maximal, large perinuclear aggregates of fluorescence were observed which corresponded in distribution and time of appearance to the eosinophilic inclusions seen in similar preparations stained with azure eosin. The inclusions, examined by electron microscopy, were composed of fibrils, presumably viral ribonucleoprotein, which specifically bound the antibody labeled with ferritin. With antiserum to concentrated virus, on the other hand, specific fluorescence was most marked at the surface of infected cells. Foci of fluorescence at the surface represented segments of membrane which had become differentiated morphologically and antigenically to resemble the viral envelope. These were the sites where mature virions appeared. The latter exhibited marked pleomorphism; in some instances, particles were formed which lacked recognizable internal fibrils but which possessed an enclosing membrane bearing viral antigen. Filamentous forms showing an organized internal structure were also observed at the cell surface, but were never encountered in negatively stained preparations. No clear relationship between these filaments and the spherical or oval forms could be established. In negatively stained preparations, nucleocapsid released by rupture of viral particles was similar in appearance to that reported for other paramyxoviruses. It seems probable that this component has a helical configuration.  相似文献   

7.
Cells which are infected with measles virus have been known for some time to contain inclusion material that is distinguishable from normal cellular components by application of traditional staining methods and observation in the light microscope. The fine structure of the inclusion material contained in HeLa cells infected with Edmonston strain of measles virus has been examined in the electron microscope. Two steps have been found necessary in this study: (1) the recognition by phase-contrast microscopy of the living cell of bodies that are defined as inclusion material when the cells are classically stained; and (2) the recognition in the electron microscope of inclusion-body material that had previously been identified in the living cell. The fine structure of the nuclear and cytoplasmic inclusion material in osmium-treated cells was found to consist mainly of randomly arrayed filaments of low electron density. Dense, highly ordered arrays of filaments were found near the center of the nuclear inclusions, sometimes as a two-dimensional, nearly orthogonal arrangement. If the size of the measles virus is taken to be around 100 mµ in diameter, the strands seen in the inclusions cannot be fully formed virus.  相似文献   

8.
The processes of cytoplasmic budding in Euproctis subflava nuclear polyhedrosis virus (NPV) were investigated, and comparisons were made among three types of envelopes which were acquired by, 1) de novo morphogenesis in the nuclei, 2) nuclear budding, and 3) cytoplasmic budding. The direction of nucleocapsids in the envelope was the same in these three modes of envelopment; the envelopment seemed to occur from a nipple end which was at one extremity of the nucleocapsid. After the envelopment, electron-dense materials were seen between the envelope and nucleocapsid, though their contents and morphological features were different among the three types of envelopes. However, these materials seemed to function similarly as a mediator between the envelope and nucleocapsid as have been observed in many vertebrate viruses which acquire envelopes. A marked difference among the three types of envelope was the characteristic cap-shaped structures with spikes which were seen only on the surface of envelope derived from the plasma membrane. After cytoplasmic budding, nucleocapsids enveloped by this way were located on the basement membrane or liberated in the hemocoel, and then they appeared to enter neighboring healthy cells via viropexis with the spike end at the head. At the sites where these spikes came into contact with healthy cells, coated vesicle-like structures were observed inside the plasma membrane. Occasionaly, incomplete particles which lacked nucleocapsids were also budded through the plasma membrane and released into extracellular space.  相似文献   

9.
To analyze the nature of the HLA class II-restricted cytotoxic T-lymphocyte (CTL) response to measles virus, murine fibroblasts were transfected with expressible cDNA clones for human HLA-DR antigen and for measles virus matrix or nucleocapsid proteins. DR-positive murine fibroblasts transfected with measles virus matrix or nucleocapsid genes were lysed by class II-restricted measles virus-specific CTL lines. Lysis was as efficient as with infected autologous B-cell lines, even though the measles virus cytoplasmic proteins were undetectable by antibodies in the transfected target cells. These results demonstrate that cytoplasmic viral antigens can be presented to CTL in the context of HLA class II antigens and that measles virus matrix and nucleocapsid proteins contribute to class II-restricted measles virus-specific CTL responses. These results also show that endogenously synthesized measles virus proteins can be efficiently presented by class II antigens. The implications of these findings for measles virus pathogenesis and for antigen processing are discussed.  相似文献   

10.
Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. I. Development and characteristics of HeLa sublines persistently infected with complete virus. J. Bacteriol. 92:1792-1804. 1966.-After the development of marked cytopathic effects in HeLa cultures infected with the Edmonston strain of measles virus, renewed cell growth occurred, and HeLa sublines persistently infected with measles virus were obtained. Persistent infection has occurred in a large fraction of the cells of infected clonal lines for more than 300 to 500 cell generations during a period of 6 years. One mechanism by means of which infection was maintained in the clonal lines is transmission of virus or viral subunits from cell to cell at division. Continued subculture of the persistently infected populations resulted in the virtual disappearance of cytopathic effects, a marked decrease in the amount of extracellular virus, and alterations in the cytopathogenicity of virus recovered from persistently infected populations. The intracellular virus-host cell events in late passages of the infected clonal lines appeared to be similar to those in cells of primary infected cultures at early stages of infection, as judged by the pattern of viral immunofluorescence and the very low incidence of cells with intranuclear inclusion bodies. Cultures of the persistently infected clonal lines were highly resistant to super infection by parent Edmonston virus. Cultures of one of these clonal lines were just as susceptible as normal HeLa cultures to vaccinia, herpes simplex, and polio type 2 viruses, and a simian agent, with a possible low degree of resistance to the simian agent.  相似文献   

11.
D Spehner  A Kirn    R Drillien 《Journal of virology》1991,65(11):6296-6300
A vaccinia virus recombinant containing the measles virus nucleoprotein gene was shown to induce the synthesis of a 60 kDa phosphorylated nucleoprotein similar to authentic measles virus nucleoprotein. Mammalian or avian cells infected with the recombinant virus displayed tubular structures reminiscent of viral nucleocapsids both in the cytoplasm and in the nucleus. Such structures could be labelled in situ by using an immunogold detection method specific for measles virus proteins. Electron microscopic examination of tubular structures purified from cells infected with the vaccinia virus recombinant indicated that they displayed most of the features of measles virus nucleocapsids, although their length was on the average shorter. These results demonstrate the spontaneous assembly of measles virus nucleocapsids in the absence of viral leader RNA and provide a means for a detailed molecular analysis of the requirements for nucleocapsid assembly. Furthermore, these findings raise the possibility of achieving complete assembly of measles virus particles, devoid of infectious RNA, by using a vaccinia virus vector.  相似文献   

12.
The cytoplasmic sites of synthesis in L cells of the protein and ribonucleic acid species of vesicular stomatitis virus were studied by polyacrylamide gel electrophoresis after fractionation of membrane and other cytoplasmic components by the Caliguiri-Tamm technique. The viral spike protein (glycoprotein G) was found primarily associated with a smooth membrane fraction which is rich in plasma membrane; the G protein was also present in fractions containing rough endoplasmic reticulum. The nonglycosylated envelope protein S (also called M) was found in the smooth membrane fractions but was more abundant in endoplasmic reticulum-enriched fractions. Longer labeling resulted in detection of nucleoprotein N, as well as other minor nucleocapsid proteins L and NS1, in the cellular membrane fractions. The N protein appeared to be made in membrane-free cytoplasm along with progeny ribonucleic acid and later became associated with membrane containing G and S viral proteins.  相似文献   

13.
Measles virus-directed protein synthesis was examined in two HeLa cell lines (K11 and K11A) that are persistently infected with wild-type measles virus. Four viral proteins (H, hemagglutination protein; P, nucleocapsid-associated protein; NP, the major nucleocapsid protein; and M, the matrix protein) were readily detected in both cell lines by immune precipitation of [(35)S]methionine-labeled cell extracts followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three (H, NP, and M) of the four viral proteins in both K11 and K11A cells differed from the corresponding viral proteins synthesized in HeLa cells acutely infected with the parental wild-type virus. In addition, the M protein from K11A cells migrated significantly more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the M protein from K11 cells, and there appeared to be slight differences in the H and NP proteins between these two persistently infected cell lines. The altered viral proteins detected in K11 and K11A cells appeared to be the result of viral mutations rather than changes in the host cell, since virus recovered from these cells directed the synthesis of similar aberrant viral proteins in HeLa cells. Virus recovered from K11 cells and virus recovered from K11A cells were both temperature sensitive and grew more slowly than wild-type virus. HeLa cells infected with virus recovered from K11 cells readily became persistently infected, resembling the original persistently infected K11 cells. Thus, viral mutations are associated with persistent measles virus infections in cell cultures.  相似文献   

14.
Bacteriophage phi 6 infects its host, the Gram-negative bacterium Pseudomonas syringae, by a protein-targeted fusion of the virus envelope with the host outer membrane. In this investigation we present results suggesting that the phage nucleocapsid penetrates the host cytoplasmic membrane via a membrane invagination and an intracellular vesicle. This indicates that the prokaryotic plasma membrane might be more dynamic and have more common features with eukaryotic membrane systems than previously expected. Most of the nucleocapsid surface lattice protein is degraded in the cell, and the nucleocapsid core particle containing the viral dsRNA segments and the proteins necessary for the viral RNA polymerase activity can be isolated from the infected cells. The penetration is dependent on the energized state of the host cytoplasmic membrane. About 25% of the entering core particles are re-used in the progeny viruses.  相似文献   

15.
16.
Electron microscopy revealed multi-layered membranes within the cytoplasmic inclusion (accumulation of nucleocapsids) produced by rabies virus. When infected BHK cells were maintained at 31 C, an enhancement in production of these membranes occurred in approximately 60% of inclusion-containing cells. Multi-layered membranes were composed of an alternate array of two different layers; an electron-dense, thin membrane and a less dense layer which was thicker. SDS-polyacrylamide gel electrophoresis and immune electron microscopy of isolated multi-layered membrane preparations demonstrated that the structures contained viral G and M2 polypeptides. Our observations suggest that these membranous structures are not a degenerative product of rabies virus infection but rather are related to the replication of viral envelope constituents, although they represent themselves to be an abortive form of viral assembly.  相似文献   

17.
The elevation of culture temperatures of C6 cells that were persistently infected with the Lec strain of the subacute sclerosing panencephalitis (SSPE) virus (C6/SSPE) resulted in immediate selective inhibition of membrane (M) protein synthesis. This phenomenon was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cytoplasmic lysates and immunoprecipitation with monoclonal antibody against the M protein in short-time labeling experiments. The synthesis of various viral mRNAs in the presence of actinomycin D decreased gradually at similar rates after a shift to 39 degrees C. No specific disappearance of the mRNA coding for the M protein was observed when viral RNAs isolated from the infected cells were compared before and after a shift up by Northern blot analysis. Results of pulse-chase experiments did not show any significant difference in M protein stability between 35 and 39 degrees C. This rapid block of M protein synthesis was observed not only in Vero cells that were lytically infected with plaque-purified clones from the Lec strain, clones isolated from C6/SSPE cells and the standard Edmonston strain of measles virus but also in CV1, MA160, and HeLa cells that were lytically infected with the Edmonston strain. Poly(A)+ RNAs that were extracted from C6/SSPE cells before and after a shift to 39 degrees C produced detectable phospho, nucleocapsid, and M proteins in cell-free translation systems at 32 degrees C. Even higher incubation temperatures did not demonstrate the selective depression of M protein synthesis described above in vitro. All these data indicate that M protein synthesis of measles virus is selectively suppressed at elevated temperatures because of an inability of the translation apparatus to interact with the M protein-encoded mRNA.  相似文献   

18.
Interactions between viral glycoproteins, matrix protein and nucleocapsid sustain assembly of parainfluenza viruses at the plasma membrane. Although the protein interactions required for virion formation are considered to be highly specific, virions lacking envelope glycoprotein(s) can be produced, thus the molecular interactions driving viral assembly and production are still unclear. Sendai virus (SeV) and human parainfluenza virus type 1 (hPIV1) are highly similar in structure, however, the cytoplasmic tail sequences of the envelope glycoproteins (HN and F) are relatively less conserved. To unveil the specific role of the envelope glycoproteins in viral assembly, we created chimeric SeVs whose HN (rSeVhHN) or HN and F (rSeVh(HN+F)) were replaced with those of hPIV1. rSeVhHN grew as efficiently as wt SeV or hPIV1, suggesting that the sequence difference in HN does not have a significant impact on SeV replication and virion production. In sharp contrast, the growth of rSeVh(HN+F) was significantly impaired compared to rSeVhHN. rSeVh(HN+Fstail) which expresses a chimeric hPIV1 F with the SeV cytoplasmic tail sequence grew similar to wt SeV or rSeVhHN. Further analysis indicated that the F cytoplasmic tail plays a critical role in cell surface expression/accumulation of HN and F, as well as NP and M association at the plasma membrane. Trafficking of nucelocapsids in infected cells was not significantly affected by the origin of F, suggesting that F cytoplasmic tail is not involved in intracellular movement. These results demonstrate the role of the F cytoplasmic tail in accumulation of structural components at the plasma membrane assembly sites.  相似文献   

19.
Ultrastructure of Measles Virus in Cultures of Hamster Cerebellum   总被引:15,自引:6,他引:9       下载免费PDF全文
Replication of Edmonston strain of measles virus in cultures of hamster central nervous system tissue was studied by electron microscopy of ultrathin sections. Infected cultures were fixed from 3 hr to 39 days postinoculation (PI). Measles nucleocapsid was first seen within the cytoplasm of giant cells, the latter appearing 5 to 6 days PI. Measles virus particles were most abundant at 10 days PI and appeared to bud off from areas of the cell membrane along which nucleocapsid was aligned. Intranuclear nucleocapsid was more abundant at later stages, and by 39 days PI entire nuclei were seen to be occupied. By this time, the cytoplasmic formations, which had been sequestered by membranes, appeared to lose their regular structure. Budding viral particles at 39 days PI were of a much simplified structure and did not involve the alignment of nucleocapsid about their periphery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号