首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of the components of the postsynaptic density (PSD), a protein complex lining the postsynaptic membrane, may regulate synaptic structure and function. We carried out mass spectrometric analyses to identify phosphorylation sites on PSD proteins. Phosphopeptides were isolated from the total tryptic digest of a PSD fraction by immobilized metal affinity chromatography and analyzed by liquid chromatography and tandem mass spectrometry. The phosphorylated residues detected following in vitro phosphorylation in the presence of Ca2+/calmodulin included S-1058 on SynGAP and S-1662 and S-1668 on Shank3. Other phosphorylated residues were identified in control samples, presumably reflecting phosphorylation in the intact cell. These included the homologous residues, S-295 on PSD-95 and S-365 on PSD-93, located between the PDZ2 and PDZ3 domains of these proteins; and S-367 located on the actin-binding domain of beta-CaMKII. The sequence RXXSPV emerged as a common phosphorylation motif of three specialized PSD scaffolding proteins, PSD-95, PSD-93, and Shank3. Phosphorylated serine residues in several of the identified phosphorylation sites were followed by prolines, suggesting prominent involvement of proline directed kinases in the regulation of PSD components.  相似文献   

2.
In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.  相似文献   

3.
The postsynaptic density (PSD) signaling machinery contains proteins with diverse functions. Brain region-specific variations in PSD components mediate distinct physiological responses to synaptic activation. We have developed mass spectrometry-based methods to comprehensively compare both relative protein expression and phosphorylation status from proteins present in biochemical preparations of postsynaptic density. Using these methods, we determined the relative expression of 2159 proteins and 1564 phosphorylation sites in PSD preparations from murine cortex, midbrain, cerebellum, and hippocampus. These experiments were conducted twice using independent biological replicates, which allowed us to assess the experimental and biological variability in this system. Concerning protein expression, cluster analysis revealed that known functionally associated proteins display coordinated synaptic expression. Therefore, proteins identified as co-clustering with known protein complexes are prime candidates for assignment as previously unrecognized components. Concerning degree of phosphorylation, we observed more extensive phosphorylation sites on N-methyl-D-aspartate (NMDA) receptors than alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, consistent with the central role of N-methyl-D-aspartate receptors in processing synaptic transmission patterns. Average kinase and phosphatase levels were highest in the hippocampus, correlating with a higher overall phosphopeptide abundance present in this brain region. These findings suggest that the hippocampus utilizes reversible protein phosphorylation to a greater extent than other brain regions when modifying synaptic strength.  相似文献   

4.
The postsynaptic density (PSD) is a cellular structure specialized in receiving and transducing synaptic information. Here we describe the identification of 452 proteins isolated from biochemically purified PSD fractions of rat and mouse brains using nanoflow HPLC coupled to electrospray tandem mass spectrometry (LC-MS/MS). Fluorescence microscopy and Western blotting were used to verify that many of the novel proteins identified exhibit subcellular distributions consistent with those of PSD-localized proteins. In addition to identifying most previously described PSD components, we also detected proteins involved in signaling to the nucleus as well as regulators of ADP-ribosylation factor signaling, ubiquitination, RNA trafficking, and protein translation. These results suggest new mechanisms by which the PSD helps regulate synaptic strength and transmission.  相似文献   

5.
The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca(2+) influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss.  相似文献   

6.
Protein constituents of the postsynaptic density (PSD) fraction were analysed using an integrated liquid chromatography (LC)-based protein identification system, which was constructed by coupling microscale two-dimensional liquid chromatography (2DLC) with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) and an automated data analysis system. The PSD fraction prepared from rat forebrain was solubilized in 6 m guanidium hydrochloride, and the proteins were digested with trypsin after S-carbamoylmethylation under reducing conditions. The tryptic peptide mixture was then analysed with the 2DLC-MS/MS system in a data-dependent mode, and the resultant spectral data were automatically processed to search a genome sequence database for protein identification. In triplicate analyses, the system allowed assignments of 5264 peptides, which could finally be attributed to 492 proteins. The PSD contained various proteins involved in signalling transduction, including receptors, ion channel proteins, protein kinases and phosphatases, G-protein and related proteins, scaffold proteins, and adaptor proteins. Structural proteins, including membrane proteins involved in cell adhesion and cell-cell interaction, proteins involved in endocytosis, motor proteins, and cytoskeletal proteins were also abundant. These results provide basic data on a major protein set associated with the PSD and a basis for future functional studies of this important neural machinery.  相似文献   

7.
The postsynaptic density (PSD) of central excitatory synapses plays a key role in postsynaptic signal transduction and contains a high concentration of glutamate receptors and associated scaffold and signaling proteins. We report here a comprehensive analysis of purified PSD fractions by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 374 different proteins that copurified with the PSD structure and discovered thirteen phosphorylated sites from eight proteins. These proteins were classified into numerous functional groups, implying that the signaling pathways in the PSD are complex and diverse. Furthermore, using quantitative mass spectrometry, we measured the molar concentration and relative stoichiometries of a number of glutamate receptor subunits and scaffold proteins in the postsynaptic density. Thus this proteomic study reveals crucial information about molecular abundance as well as molecular diversity in the PSD, and provides a basis for further studies on the molecular mechanisms of synaptic function and plasticity.  相似文献   

8.
The postsynaptic density (PSD) plays an essential role in the organization of the synaptic signaling machinery. It contains a set of core scaffolding proteins that provide the backbone to PSD protein-protein interaction networks (PINs). These core scaffolding proteins can be seen as three principal layers classified by protein family, with DLG proteins being at the top, SHANKs along the bottom, and DLGAPs connecting the two layers. Early studies utilizing yeast two hybrid enabled the identification of direct protein-protein interactions (PPIs) within the multiple layers of scaffolding proteins. More recently, mass-spectrometry has allowed the characterization of whole interactomes within the PSD. This expansion of knowledge has further solidified the centrality of core scaffolding family members within synaptic PINs and provided context for their role in neuronal development and synaptic function. Here, we discuss the scaffolding machinery of the PSD, their essential functions in the organization of synaptic PINs, along with their relationship to neuronal processes found to be impaired in complex brain disorders.  相似文献   

9.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD.  相似文献   

10.
Composition of the synaptic PSD-95 complex   总被引:2,自引:0,他引:2  
Postsynaptic density protein 95 (PSD-95), a specialized scaffold protein with multiple protein interaction domains, forms the backbone of an extensive postsynaptic protein complex that organizes receptors and signal transduction molecules at the synaptic contact zone. Large, detergent-insoluble PSD-95-based postsynaptic complexes can be affinity-purified from conventional PSD fractions using magnetic beads coated with a PSD-95 antibody. In the present study purified PSD-95 complexes were analyzed by LC/MS/MS. A semiquantitative measure of the relative abundances of proteins in the purified PSD-95 complexes and the parent PSD fraction was estimated based on the cumulative ion current intensities of corresponding peptides. The affinity-purified preparation was largely depleted of presynaptic proteins, spectrin, intermediate filaments, and other contaminants prominent in the parent PSD fraction. We identified 525 of the proteins previously reported in parent PSD fractions, but only 288 of these were detected after affinity purification. We discuss 26 proteins that are major components in the PSD-95 complex based upon abundance ranking and affinity co-purification with PSD-95. This subset represents a minimal list of constituent proteins of the PSD-95 complex and includes, in addition to the specialized scaffolds and N-methyl-d-aspartate (NMDA) receptors, an abundance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, small G-protein regulators, cell adhesion molecules, and hypothetical proteins. The identification of two Arf regulators, BRAG1 and BRAG2b, as co-purifying components of the complex implies pivotal functions in spine plasticity such as the reorganization of the actin cytoskeleton and insertion and retrieval of proteins to and from the plasma membrane. Another co-purifying protein (Q8BZM2) with two sterile alpha motif domains may represent a novel structural core element of the PSD.  相似文献   

11.
The major proteins in isolated synaptic junctions (SJs) and postsynaptic densities (PSDs) have been compared to actin, tubulin, and the major neurofilament (NF) protein by two-dimensional gel electrophoresis and tryptic peptide map analysis. These studies show: (a) tubulin is present in SJ and PSD fractions and is identical to cytoplasmic tubulin, (b) actin in these fractions is very similar to the gamma- and beta-actin found predominantly in nonmuscle cells, and (c) the major PSD protein is distinct from all other known fibrous proteins.  相似文献   

12.
Calcium/calmodulin-dependent protein kinase II (CaMKII), a major component of the postsynaptic density (PSD) of excitatory synapses, plays a key role in the regulation of synaptic function in the mammalian brain. Although many postsynaptic substrates for CaMKII have been characterized in vitro, relatively little is known about their phosphorylation in vivo. By tagging synaptic proteins with a peptide substrate specific for CaMKII and expressing them in cultured neurons, we have visualized substrate phosphorylation by CaMKII at intact synapses. All substrates tested were strongly phosphorylated by CaMKII in HEK293 cells. However, activity-dependent phosphorylation of substrates at synapses was highly selective in that the glutamate receptor subunits NR2B and GluR1 were poorly phosphorylated whereas PSD-95 and Stargazin, proteins implicated in the scaffolding and trafficking of AMPA receptors, were robustly phosphorylated. Phosphatase activity limited phosphorylation of Stargazin but not NR2B and GluR1. These results suggest that the unique molecular architecture of the PSD results in highly selective substrate discrimination by CaMKII.  相似文献   

13.
Proteomic analysis of in vivo phosphorylated synaptic proteins   总被引:10,自引:0,他引:10  
In the nervous system, protein phosphorylation is an essential feature of synaptic function. Although protein phosphorylation is known to be important for many synaptic processes and in disease, little is known about global phosphorylation of synaptic proteins. Heterogeneity and low abundance make protein phosphorylation analysis difficult, particularly for mammalian tissue samples. Using a new approach, combining both protein and peptide immobilized metal affinity chromatography and mass spectrometry data acquisition strategies, we have produced the first large scale map of the mouse synapse phosphoproteome. We report over 650 phosphorylation events corresponding to 331 sites (289 have been unambiguously assigned), 92% of which are novel. These represent 79 proteins, half of which are novel phosphoproteins, and include several highly phosphorylated proteins such as MAP1B (33 sites) and Bassoon (30 sites). An additional 149 candidate phosphoproteins were identified by profiling the composition of the protein immobilized metal affinity chromatography enrichment. All major synaptic protein classes were observed, including components of important pre- and postsynaptic complexes as well as low abundance signaling proteins. Bioinformatic and in vitro phosphorylation assays of peptide arrays suggest that a small number of kinases phosphorylate many proteins and that each substrate is phosphorylated by many kinases. These data substantially increase existing knowledge of synapse protein phosphorylation and support a model where the synapse phosphoproteome is functionally organized into a highly interconnected signaling network.  相似文献   

14.
Located at neuronal terminals, the postsynaptic density (PSD) is a highly complex network of cytoskeletal scaffolding and signaling proteins responsible for the transduction and modulation of glutamatergic signaling between neurons. Using ion‐mobility enhanced data‐independent label‐free LC‐MS/MS, we established a reference proteome of crude synaptosomes, synaptic junctions, and PSD derived from mouse hippocampus including TOP3‐based absolute quantification values for identified proteins. The final dataset across all fractions comprised 49 491 peptides corresponding to 4558 protein groups. Of these, 2102 protein groups were identified in highly purified PSD in at least two biological replicates. Identified proteins play pivotal roles in neurological and synaptic processes providing a rich resource for studies on hippocampal PSD function as well as on the pathogenesis of neuropsychiatric disorders. All MS data have been deposited in the ProteomeXchange with identifier PXD000590 ( http://proteomecentral.proteomexchange.org/dataset/PXD000590 ).  相似文献   

15.
16.
Proteomic analysis of the mouse liver mitochondrial inner membrane   总被引:14,自引:0,他引:14  
Mitochondria play a crucial role in cellular homeostasis, which justifies the increasing interest in mapping the different components of these organelles. Here we have focused our study on the identification of proteins of the mitochondrial inner membrane (MIM). This membrane is of particular interest because, besides the well known components of the respiratory chain complexes, it contains several ion channels and many carrier proteins that certainly play a key role in mitochondrial function and, therefore, deserve to be identified at the molecular level. To achieve this goal we have used a novel approach combining the use of highly purified mouse liver mitochondrial inner membranes, extraction of membrane proteins with organic acid, and two-dimensional liquid chromatography coupled to tandem mass spectrometry. This procedure allowed us to identify 182 proteins that are involved in several biochemical processes, such as the electron transport machinery, the protein import machinery, protein synthesis, lipid metabolism, and ion or substrate transport. The full range of isoelectric point (3.9-12.5), molecular mass (6-527 kDa), and hydrophobicity values (up to 16 transmembrane predicted domains) were represented. In addition, of the 182 proteins found, 20 were unknown or had never previously been associated with the MIM. Overexpression of some of these proteins in mammalian cells confirmed their mitochondrial localization and resulted in severe remodeling of the mitochondrial network. This study provides the first proteome of the MIM and provides a basis for a more detailed study of the newly characterized proteins of this membrane.  相似文献   

17.
Synapses are highly organized, specific structures assuring rapid and highly selective interactions between cells. Synaptic transmission involves the release of neurotransmitter from presynaptic neurons and its detection by specific ligand-gated ion channels at the surface membrane of postsynaptic neurons. The protenomic analysis shows that for self-formation and functioning of synapses nearly 2000 proteins are involved in mammalian brain. The core complex in excitatory synapses includes glutamate receptors, potassium channels, CaMKII, scaffolding protein and actin. These proteins exist as part of a highly organized protein complex known as the postsynaptic density (PSD). The coordinated functioning of the different PSD components determines the strength of signalling between the pre- and postsynaptic neurons. Synaptic plasticity is regulated by changes in the amount of receptors on the postsynaptic membrane, changes in the shape and size of dendritic spines, posttranslational modification of PSD components, modulation kinetics of synthesis and degradation of proteins. Integration of these processes leads to long-lasting changes in synaptic function and neuronal networks underlying learning-related plasticity, memory and information treatment in nervous system of multicellular organisms.  相似文献   

18.
Much effort has focused on the identification of MAPK cascades that are activated by the MEKK family of protein kinases. However, direct phosphorylation and regulation of the MEKK proteins has not been shown. To address this question, we have expressed recombinant (His)6FLAG.MEKK3 in Sf9 insect cells and tethered the purified protein to Ni-Sepharose so that we could precipitate interacting proteins and then identify such proteins by liquid chromatography and mass spectrometry (LC-MS). We identified 14-3-3 proteins as interacting with MEKK3, which suggested that (His)6FLAG.MEKK3 was phosphorylated on serine since 14-3-3 proteins are known to associate with phosphorylated proteins. We identified two phosphorylated amino acids at Ser166 and Ser337 of tryptic peptides derived from (His)6FLAG.MEKK3 by using LC-MS. Antibodies were developed that recognize the specific phosphorylated amino acid and with these antibodies, we demonstrate that various stimuli (tumor necrosis factor, arsenite, forskolin, and serum) promote phosphorylation of Ser166 and Ser337. However, neither of these phosphorylated amino acids is required for association with 14-3-3 protein or regulation of MEKK3-dependent ERK and JNK activity. Nonetheless, these results suggest that MEKK3 is a convergence point of multiple upstream signaling pathways.  相似文献   

19.
It is essential to study the molecular architecture of post‐synaptic density (PSD ) to understand the molecular mechanism underlying the dynamic nature of PSD , one of the bases of synaptic plasticity. A well‐known model for the architecture of PSD of type I excitatory synapses basically comprises of several scaffolding proteins (scaffold protein model). On the contrary, ‘PSD lattice’ observed through electron microscopy has been considered a basic backbone of type I PSD s. However, major constituents of the PSD lattice and the relationship between the PSD lattice and the scaffold protein model, remain unknown. We purified a PSD lattice fraction from the synaptic plasma membrane of rat forebrain. Protein components of the PSD lattice were examined through immuno‐gold negative staining electron microscopy. The results indicated that tubulin, actin, α‐internexin, and Ca2+/calmodulin‐dependent kinase II are major constituents of the PSD lattice, whereas scaffold proteins such as PSD ‐95, SAP 102, GKAP , Shank1, and Homer, were rather minor components. A similar structure was also purified from the synaptic plasma membrane of forebrains from 7‐day‐old rats. On the basis of this study, we propose a ‘PSD lattice‐based dynamic nanocolumn’ model for PSD molecular architecture, in which the scaffold protein model and the PSD lattice model are combined and an idea of dynamic nanocolumn PSD subdomain is also included. In the model, cytoskeletal proteins, in particular, tubulin, actin, and α‐internexin, may play major roles in the construction of the PSD backbone and provide linker sites for various PSD scaffold protein complexes/subdomains.

  相似文献   

20.
J. Neurochem. (2011) 119, 64-77. ABSTRACT: Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not because of the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号