首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication initiator protein RepA of the IncB plasmid pMU720 was purified and used in DNase I protection assays in vitro. RepA protected a 68-bp region of the origin of replication of pMU720. This region, which lies immediately downstream of the DnaA box, contains four copies of the sequence motif 5'AANCNGCAA3'. Mutational analyses identified this sequence as the binding site specifically recognized by RepA (the RepA box). Binding of RepA to the RepA boxes was ordered and sequential, with the box closest to the DnaA binding site (box 1) occupied first and the most distant boxes (boxes 3 and 4) occupied last. However, only boxes 1, 2, and 4 were essential for origin activity, with box 3 playing a lesser role. Changing the spacing between box 1 and the other three boxes affected binding of RepA in vitro and origin activity in vivo, indicating that the RepA molecules bound to ori(B) interact with one another.  相似文献   

2.
3.
We previously identified the origin of replication of p703/5, a small cryptic plasmid from the KBL703 strain of Enterococcus faecalis. The origin of replication contains putative regulatory cis-elements required for replication and a replication initiator (RepA) gene. The replicon of p703/5 is similar in its structural organization to theta-type plasmids, and RepA is homologous to a family of Rep proteins identified in several plasmids from Gram-positive bacteria. Here, we report molecular interactions between RepA and the replication origin of p703/5. DNase I footprinting using recombinant RepA together with electrophoretic mobility shift assays confirmed the binding of RepA to the replication origin of p703/5 via iterons and an inverted repeat. We also demonstrated the formation of RepA dimers and the different binding of RepA to the iteron and the inverted repeat using gel filtration chromatographic analysis, a chemical crosslinking assay, and electrophoretic mobility shift assays in the presence of guanidine hydrochloride. Our results suggest that RepA plays a regulatory role in the replication of the enterococcal plasmid p703/5 via mechanisms similar to those of typical iteron-carrying theta-type plasmids.  相似文献   

4.
Plasmid CTX-M3 (89 kb) isolated from Citrobacter freundii from a Warsaw hospital is a mosaic plasmid with replication functions 100% identical with those of pMU407.1 of the IncL/M group, conjugative operons with up to 60% homology to ColIb-P9 (IncI) and stability functions originating either from NR1(R100) (IncFII) or ColIb-P9 /R1/NR1 plasmids. We established the broad-host-range for pCTX-M3 and defined its minireplicon in Escherichia coli. We analyzed the role of stability cassettes and showed that the par operon consists of three orfs parA (stbA), parB (stbB) and nuc with a centromere-like region located upstream of the operon. Deletion of the par operon strongly destabilized pCTX-M3 despite the presence of the pemIK toxin-antidote system identical to that on NR1(R100) plasmids. Deletion of the pemIK operon had no effect on plasmid stability.  相似文献   

5.
J Germino  D Bastia 《Cell》1983,34(1):125-134
Initiation of DNA replication in plasmid R6K is potentiated by the plasmid-encoded 35 kd replication initiator protein. We had previously reported that the initiator bound to two regions of R6K DNA called Site I and Site II. Using DNAase I footprinting technique we have demonstrated that the initiator bound to seven tandem repeats of a 22 bp long sequence in Site I. In Site II, the initiator bound to a single repeat having the same consensus sequence and to two partial repeats that most likely overlap the promoter of the initiation protein cistron. Using dimethyl sulfate as a chemical probe, we have determined the purine residues of Site I and Site II that make contact with the initiator protein. The results show that eight out of nine contact points per repeat in Site I were located on one of the two strands of the DNA. The binding of the initiator to the Site II sequence could explain the observed autoregulation of the synthesis of the initiator protein by promoter occlusion.  相似文献   

6.
7.
Replication of the IncL/M plasmid pMU604 is controlled by a small antisense RNA molecule (RNAI), which, by inhibiting the formation of an RNA pseudoknot, regulates translation of the replication initiator protein, RepA. Efficient translation of the repA mRNA was shown to require the translation and correct termination of the leader peptide, RepB, and the formation of the pseudoknot. Although the pseudoknot was essential for the expression of repA, its presence was shown to interfere with the translation of repB. The requirement for pseudoknot formation could in large part be obviated by improving the ribosome binding region of repA, either by replacing the GUG start codon by AUG or by increasing the spacing between the start codon and the Shine-Dalgarno sequence (SD). The spacing between the distal pseudoknot sequence and the repA SD was shown to be suboptimal for maximal expression of repA.  相似文献   

8.
Binding of the P1-encoded protein RepA to the origin of P1 plasmid replication is essential for initiation of DNA replication and for autoregulatory repression of the repA promoter. Previous studies have shown defects in both initiation and repression in hosts lacking heat shock proteins DnaJ, DnaK, and GrpE and have suggested that these proteins play a role in the RepA-DNA binding required for initiation and repression. In this study, using in vivo dimethyl sulfate footprinting, we have confirmed the roles of the three heat shock proteins in promoting RepA binding to the origin. The defects in both activities could be suppressed by increasing the concentration of wild-type RepA over the physiological level. We also isolated RepA mutants that were effective initiators and repressors without requiring the heat shock proteins. These data suggest that the heat shock proteins facilitate both repression and initiation by promoting only the DNA-binding activity of RepA. In a similar plasmid, F, initiator mutants that confer heat shock protein independence for replication were also found, but they were defective for repression. We propose that the initiator binding involved in repression and the initiator binding involved in initiation are similar in P1 but different in F.  相似文献   

9.
pSA1.1 is a 9.1-kb multicopy plasmid originally isolated from Streptomyces cyaneus (formerly S. azureus) ATCC 14921. This plasmid accumulates single-stranded DNA in S. lividans and is therefore considered to replicate by a rolling-circle replication. In the present work, the rep gene encoding the replication initiator protein and the replication origin ori of pSA1.1 were determined. The rep and ori are located on separate regions. The Rep protein of pSA1.1 belongs to superfamily I which includes A proteins of phages. Nucleotide sequence of the surrounding putative nicking site of pSA1.1 shows good agreement with those of the pC194 group plasmids and phages. The direction of replication was also determined.  相似文献   

10.
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.  相似文献   

11.
Zzaman S  Bastia D 《Molecular cell》2005,20(6):833-843
Although DNA looping between the initiator binding sites (iterons) of the replication origin (ori) of a plasmid and the iterons located in a cis-acting control sequence called inc has been postulated to promote negative control of plasmid DNA replication, not only was definitive evidence for such looping lacking, but also the detailed molecular mechanism of this control had not been elucidated. Here, we present direct evidence showing that both the monomeric and the dimeric forms of the RepE initiator protein of F factor together promote pairing of incC-oriF sites by DNA looping. By using a reconstituted replication system consisting of 26 purified proteins, we show further that the DNA loop formation negatively regulates plasmid replication by inhibiting the formation of an open complex at the replication origin, thus elucidating a key step of replication control.  相似文献   

12.
Conformational changes in a replication origin induced by an initiator protein   总被引:37,自引:0,他引:37  
S Mukherjee  I Patel  D Bastia 《Cell》1985,43(1):189-197
The replication initiator protein of the plasmid R6K binds to seven contiguous 22 bp direct repeats that form an indispensable part of the three replication origins alpha, beta, and gamma. Binding of the initiator to the direct repeats induced a marked bending of the region of gamma replication origin. Binding of the initiator also promoted unwinding of the origin DNA by at least two turns. Distamycin appeared to antagonize the binding of the initiator to the seven 22 bp direct repeats. At the appropriate DNA and protein concentrations the initiator enhanced topoisomerase-induced catenation of the origin containing supercoiled DNA but not of DNA lacking the origin sequence. Thus, the initiator protein caused significant changes in the secondary and tertiary structures of the replication origin.  相似文献   

13.
The DNA unwinding element (DUE) is a sequence rich in adenine and thymine residues present within the origin region of both prokaryotic and eukaryotic replicons. Recently, it has been shown that this is the site where bacterial DnaA proteins, the chromosomal replication initiators, form a specific nucleoprotein filament. DnaA proteins contain a DNA binding domain (DBD) and belong to the family of origin binding proteins (OBPs). To date there has been no data on whether OBPs structurally different from DnaA can form nucleoprotein complexes within the DUE. In this work we demonstrate that plasmid Rep proteins, composed of two Winged Helix domains, distinct from the DBD, specifically bind to one of the strands of ssDNA within the DUE. We observed nucleoprotein complexes formed by these Rep proteins, involving both dsDNA containing the Rep-binding sites (iterons) and the strand-specific ssDNA of the DUE. Formation of these complexes required the presence of all repeated sequence elements located within the DUE. Any changes in these repeated sequences resulted in the disturbance in Rep-ssDNA DUE complex formation and the lack of origin replication activity in vivo or in vitro.  相似文献   

14.
Replication of P1 plasmid requires both the plasmid-specific initiator, RepA, and the host initiator, DnaA. Here we show that DnaA can make the P1 origin reactive to the single-strand specific reagents KMnO4 and mung bean nuclease. Addition of RepA further increased the KMnO4 reactivity of the origin, although RepA alone did not influence the reaction. The increased reactivity implies that the two initiators interact in some way to alter the origin conformation. The KMnO4 reactivity was restricted to one strand of the origin. We suggest that the roles of DnaA in P1 plasmid and bacterial replication are similar: origin opening and loading of the DnaB helicase. The strand-bias in chemical reactivity at the P1 origin most likely indicates that only one of the strands is used for the loading of DnaB, a scenario consistent with the unidirectional replication of the plasmid.  相似文献   

15.
Episomal maintenance and DNA replication of EBV origin of plasmid replication (OriP) plasmid maintenance is mediated by the viral encoded origin binding protein, EBNA1, and unknown cellular factors. We found that telomeric repeat binding factor 2 (TRF2), TRF2-interacting protein hRap1, and the telomere-associated poly(ADP-ribose) polymerase (Tankyrase) bound to the dyad symmetry (DS) element of OriP in an EBNA1-dependent manner. TRF2 bound cooperatively with EBNA1 to the three nonamer sites (TTAGGGTTA), which resemble telomeric repeats. Mutagenesis of the nonamers reduced plasmid maintenance function and increased plasmid sensitivity to genotoxic stress. DS affinity-purified proteins possessed poly(ADP-ribose) polymerase (PARP) activity, and EBNA1 was subject to NAD-dependent posttranslational modification in vitro. OriP plasmid maintenance was sensitive to changes in cellular PARP/Tankyrase activity. These findings imply that telomere-associated proteins regulate OriP plasmid maintenance by PAR-dependent modifications.  相似文献   

16.
The TrfA proteins, encoded by the broad host range plasmid RK2, are required for replication of this plasmid in a variety of Gram-negative bacteria. Two TrfA proteins, 33 and 44 kDa in molecular mass (designated TrfA-33 and TrfA-44, respectively), are expressed from the trfA gene of RK2 through the use of two alternative in-frame start codons within the same open reading frame. The two proteins have been purified from Escherichia coli to near homogeneity as a mixture of wild-type TrfA-44/33, as TrfA-33 alone and as a functional variant form of TrfA-44, designated TrfA-44(98L), which contains a leucine in place of the TrfA-33 methionine start codon. Cross-linking experiments demonstrated that TrfA-33 can multimerize in solution. By using gel mobility shift and DNase I footprinting techniques the binding properties of TrfA-33, TrfA-44(98L), and TrfA-44/33 to the origin of replication of plasmid RK2 were analyzed. All three protein preparations were able to bind very specifically to the cluster of five direct repeats (iterons) contained in the minimal origin of replication. Each protein preparation produced a ladder of TrfA/minimal oriV complexes of decreasing electrophoretic mobility. The DNase I protection pattern on the five iterons was identical for all three protein preparations and extended from the beginning of the first iteron to 5 base pairs upstream of the fifth iteron. Studies on the affinity of the proteins for DNA fragments containing one, two, or all five iterons of the origin revealed a strong preference of TrfA protein for DNA containing at least two iterons. To study the stability of TrfA.DNA complexes, association and dissociation rates of TrfA-33 and DNA fragments with one, two, or five iterons were measured. This analysis showed that unlike complexes involving two or five iterons the TrfA/one iteron complexes were highly unstable, suggesting some form of cooperativity between proteins or iterons in the formation of stable complexes and/or the requirement of specific sequences bordering the iterons at the RK2 origin of replication for the stabilization of TrfA/DNA complexes.  相似文献   

17.
pT181, a 4.4-kilobase multicopy plasmid of Staphylococcus aureus, encodes a trans-acting initiator protein, RepC, which was rate limiting for replication. Deletions in a 500-base-pair region of the plasmid external to the minimal replicon decreased the ability of the plasmid to compete with a coexisting incompatible plasmid. These deletions, which define a region called cmp (for competition), appeared to affect the interaction of RepC and the plasmid origin of replication. However, in the homoplasmid state the deletions affected neither copy number nor plasmid stability. The Cmp phenotype is orientation independent, and cmp defects could not be complemented in trans.  相似文献   

18.
The replication initiator protein RepA of the IncB plasmid pMU720 was shown to induce localized unwinding of its cognate origin of replication in vitro. DnaA, the initiator protein of Escherichia coli, was unable to induce localized unwinding of this origin of replication on its own but enhanced the opening generated by RepA. The opened region lies immediately downstream of the last of the three binding sites for RepA (RepA boxes) and covers one turn of DNA helix. A 6-mer sequence, 5'-TCTTAA-3', which lies within the opened region, was essential for the localized unwinding of the origin in vitro and origin activity in vivo. In addition, efficient unwinding of the origin of replication of pMU720 in vitro required the native positioning of the binding sites for the initiator proteins. Interestingly, binding of RepA to RepA box 1, which is essential for origin activity, was not required for the localized opening of the origin in vitro.  相似文献   

19.
E protein, the 29 kd product of the F plasmid repE gene, plays both positive and negative roles in the autoregulation of F replication. We have cloned and expressed the repE gene in an inducible ATG-fusion vector and have detected specific binding of E protein to the repE operator and to four 19-base pair direct repeats (incB) within the F plasmid replication origin ori2. Binding of E protein at the repE operator occurs with higher affinity than at ori2(incB) and gives almost complete protection to at least 30 base pairs, whereas binding of E protein to the direct repeats in the ori2 region shows an alternating pattern of enhanced and reduced sensitivity to DNAase cleavage consistent with a protein-induced folding of the DNA. These results provide direct biochemical support for a model of F plasmid replication in which the E protein serves both as an initiator of replication and as an autorepressor of its own synthesis.  相似文献   

20.
Abstract pT181 is a Staphylococcus aureus rolling circle replicating plasmid whose copy number is controlled by regulating the synthesis and activity of the initiator protein, RepC. The RepC dimer is modified during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. To purify RepC*, RepC was expressed in S. aureus as a fusion protein with a polyhistidine tail. The histidine-tagged RepC retains its initiation and topoisomerase activities in vitro. Histagged RepC/RepC and RepC/RepC* were purified in a two-step procedure. Peptide mapping, mass spectrometric analysis and protein sequencing of purified RepC and RepC* were carried out, and both proteins appeared identical, except that the peptide containing the RepC active site tyrosine used in nicking activity was absent when the purified RepC* sample was analyzed. The absence of the active site in RepC* suggests that this site was modified during replication. The results provide the first direct biochemical evidence that RepC* is a modified form of RepC, and support a model in which RepC replication of pT181 leaves RepC with an oligonucleotide blocking the active site of one of its subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号