首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic activity of various Escherichia coli and Salmonella enterica strains. Soluble ClyA monomers spontaneously assemble into annular dodecameric pore complexes upon contact with membranes or detergent. At ClyA monomer concentrations above ∼100 nm, the rate-limiting step in detergent- or membrane- induced pore assembly is the unimolecular reaction from the monomer to the assembly-competent protomer, which then oligomerizes rapidly to active pore complexes. In the absence of detergent, ClyA slowly forms soluble oligomers. Here we show that soluble ClyA oligomers cannot form dodecameric pore complexes after the addition of detergent and are hemolytically inactive. In addition, we demonstrate that the natural cysteine pair Cys-87/Cys-285 of ClyA forms a disulfide bond under oxidizing conditions and that both the oxidized and reduced ClyA monomers assemble to active pores via the same pathway in the presence of detergent, in which an unstructured, monomeric intermediate is transiently populated. The results show that the oxidized ClyA monomer assembles to pore complexes about one order of magnitude faster than the reduced monomer because the unstructured intermediate of oxidized ClyA is less stable and dissolves more rapidly than the reduced intermediate. Moreover, we show that oxidized ClyA forms soluble, inactive oligomers in the absence of detergent much faster than the reduced monomer, providing an explanation for several contradictory reports in which oxidized ClyA had been described as inactive.  相似文献   

2.
The new QUAFIT method for determining the quaternary structure of biological macromolecular assemblies by analyzing x-ray or neutron small-angle scattering data is presented. The method is based on the idea that asymmetric monomers, formed by rigid domains of known atomic structure possibly connected by flexible linkers of known sequence, are assembled according to a point-group symmetry combined with a screw axis. Scattering amplitudes of domains and linkers are determined by means of a spherical harmonics expansion and combined to get the form factor of the assembly. To avoid any overlap among domains, the contact distance between two asymmetric domains is determined as a function of their orientation by a new algorithm, based on Stone's Invariants expansion. To account for continuity and compactness of the whole assembly, an anisotropic Lennard-Jones potential among domains, written in terms of the contact distances, is included in the merit function. QUAFIT allows for the simultaneous presence of oligomerization intermediates as well as of monomers distributed over multiple conformations. QUAFIT has been tested by studying the structure of a high molecular weight protein, the hemocyanin from Octopus vulgaris, under solution conditions that stabilize the decameric form or induce dissociation into monomers, respectively. Results are in very good agreement with the structural model derived from electron microscopy observations.  相似文献   

3.
Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.  相似文献   

4.
5.
Liu Y  Xu L  Opalka N  Kappler J  Shu HB  Zhang G 《Cell》2002,108(3):383-394
TALL-1/BAFF/BLyS was recently identified as a member of the tumor necrosis factor (TNF) ligand family. The crystal structure of the functional soluble TALL-1 (sTALL-1) has been determined at 3.0 A. sTALL-1 forms a virus-like assembly with 200 A diameter in the crystals, containing 60 sTALL-1 monomers. The cluster formation is mediated by a "flap" region of the sTALL-1 monomer. The virus-like assembly was also detected in solution using gel filtration and electron microscopy. Deletion of the flap region disrupted the formation of the virus-like assembly. The mutant sTALL-1 still bound its receptor but could not activate NF-kappaB and did not stimulate B lymphocyte proliferation. Finally, we found the virus-like cluster of sTALL-1 exists in physiological condition. We propose that this virus-like assembly of sTALL-1 is the functional unit for TALL-1 in vivo.  相似文献   

6.
A recombinant human procollagen II was prepared that contained a substitution of Cys for Arg at alpha1-519 and that was found in five families with early onset generalized osteoarthritis with or without features of a mild chondrodysplasia. Previously, the presence of mutated monomers in mixtures with wildtype collagen II was shown to increase the lag period for fibril assembly. Also, the fibrils were more loosely packed and some thick fibrils lacked a D-periodic banding pattern. Here we re-examined the fibrils using a combination of transmission electron microscopy and atomic force microscopy. The presence of the mutated monomers increased the diameter of the thin filaments that were consistently formed in association with the thick fibrils of collagen II. In addition, the presence of the mutated monomers increased the depth of the gap regions in all fibrils with a distinct D-periodic banding pattern. The results, therefore, may indicate that the mutated monomers formed two or three additional outer layers of monomers in 0D-period staggers on the surface of the fibrils. Apparently, the mutated monomers were bound on the surface through intermolecular disulfide bonds.  相似文献   

7.
The surfactant-associated protein, protein A, produced by transgenic Chinese hamster ovary cells exhibits a heterogeneous population of structures. Electron microscopy reveals lollipop-shaped monomers consisting of a collagenous triple helix and a globular domain as well as oligomers in which two, three or more protomers are connected by their collagenous stalks. Each protomer consists of three alpha-chains (36 kDa) but under non-reducing conditions few free alpha-chains are observed by SDS/PAGE. Instead gamma-components (three chains), gamma 2 (six chains) and higher components are observed which are derived from intra- and inter-protomer disulfide cross-linking. Complete reduction at low temperature dissociates the oligomers, but preserves the intact structure of monomers as demonstrated by electron microscopy and trypsin digestion. Circular dichroism revealed an unfolding of the collagen triple helices of fully reduced protein A at 26 degrees C and of the unreduced protein A around 41.5 degrees C. Reoxidation of the fully reduced protein A re-established mainly the disulfide bonds within the triple helix but not between monomers. Very few higher assembly forms were reformed even at high protein A concentrations. Cellular in vivo systems must possess an efficient assembly mechanism which cannot be simulated by an in vitro system.  相似文献   

8.
《The Journal of cell biology》1989,109(4):1537-1547
We used 90 degrees light scattering, analytical ultracentrifugation, and electron microscopy to deduce that Acanthamoeba myosin-II minifilaments, composed of eight molecules each, assemble by a novel mechanism consisting of three successive dimerization steps rather than by the addition of monomers or parallel dimers to a nucleus. Above 200 mM KCl, Acanthamoeba myosin-II is monomeric. At low ionic strength (less than 100 mM KCl), myosin-II polymerizes into bipolar minifilaments. Between 100 and 200 mM KCl, plots of light scattering vs. myosin concentration all extrapolate to the origin but have slopes which decrease with increasing KCl. This indicates that structures intermediate in size between monomers and full length minifilaments are formed, and that the critical concentrations for assembly of these structures is very low. Analytical ultracentrifugation has confirmed that intermediate structures exist at these salt concentrations, and that they are in rapid equilibrium with each other. We believe these structures represent assembly intermediates and have used equilibrium analytical ultracentrifugation and electron microscopy to identify them. Polymerization begins with the formation of antiparallel dimers, with the two tails overlapping by approximately 15 nm. Two antiparallel dimers then associated with a 15-nm stagger to form an antiparallel tetramer. Finally, two tetramers associate with a 30-nm stagger to form the completed minifilament. At very low ionic strengths, the last step in the assembly mechanism is largely reversed and antiparallel tetramers are the predominant species. Alkaline pH, which can also induce minifilament disassembly, produces the same assembly intermediates as are found for salt induced disassembly.  相似文献   

9.
The ClyA protein is a pore-forming cytotoxin expressed by Escherichia coli and some other enterobacteria. It confers cytotoxic activity toward mammalian cells, but it has remained unknown how ClyA is surface exposed and exported from bacterial cells. Outer-membrane vesicles (OMVs) released from the bacteria were shown to contain ClyA protein. ClyA formed oligomeric pore assemblies in the OMVs, and the cytotoxic activity toward mammalian cells was considerably higher than that of ClyA protein purified from the bacterial periplasm. The redox status of ClyA correlated with its ability to form the oligomeric pore assemblies. In bacterial cells with a defective periplasmic disulphide oxidoreductase system, the ClyA protein was phenotypically expressed in a constitutive manner. The results define a vesicle-mediated transport mechanism in bacteria, and our findings show that the localization of proteins to OMVs directly may contribute to the activation and delivery of pathogenic effector proteins.  相似文献   

10.
Extracellular accumulation of transthyretin (TTR) variants in the form of fibrillar amyloid deposits is the pathological hallmark of familial amyloidotic polyneuropathy (FAP). The TTR Leu55Pro variant occurs in the most aggressive forms of this disease. Inhibition of TTR wild-type (WT) and particularly TTR Leu55Pro fibril formation is of interest as a potential therapeutic strategy and requires a thorough understanding of the fibril assembly mechanism. To this end, we report on the in vitro assembly properties as observed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and quantitative scanning transmission electron microscopy (STEM) for both TTR WT fibrils produced by acidification, and TTR Leu55Pro fibrils assembled at physiological pH. The morphological features and dimensions of TTR WT and TTR Leu55Pro fibrils were similar, with up to 300 nm long, 8 nm wide fibrils being the most prominent species in both cases. Other species were evident; 4-5 nm wide fibrils, 9-10 nm wide fibrils and oligomers of various sizes. STEM mass-per-length (MPL) measurements revealed discrete fibril types with masses of 9.5 and 14.0(+/-1.4) KDa/nm for TTR WT fibrils and 13.7, 18.5 and 23.2(+/-1.5) kDa/nm for TTR Leu55Pro fibrils. These MPL values are consistent with a model in which fibrillar TTR structures are composed of two, three, four or five elementary protofilaments, with each protofilament being a vertical stack of structurally modified TTR monomers assembled with the 2.9 nm axial monomer-monomer spacing indicated by X-ray fibre diffraction data. Ex vivo TTR amyloid fibrils were examined. From their morphological appearance compared to these, the in vitro assembled TTR WT and Leu55Pro fibrils examined may represent immature fibrillar species. The in vitro system operating at physiological pH for TTR Leu55Pro and the model presented for the molecular arrangement of TTR monomers within fibrils may, therefore, describe early fibril assembly events in vivo.  相似文献   

11.
Self-assembled filaments of smooth muscle myosin were observed by low dose electron microscopy to be flat side-polar sheets, in which the component molecules appeared straight and close-packed. Fraying experiments released small oligomers, in which molecules were staggered in parallel by about +/- 14 nm relative to two immediate neighbours, and were bound also to an antiparallel partner via a approximately 14 nm overlap at the very tip of the tail. We suggest a filament model which preserves these packing relationships. Adding stoichiometric amounts of MgATP to the filaments caused them to disassemble completely by progressive loss of material from their ends, at a limiting rate equivalent to about 2 monomers per second per end in physiological saline. The rate of the competing association reaction varied linearly with the monomer concentration, as determined in pressure-jump experiments. This suggests that myosin monomers, rather than dimers or higher oligomers, are the building blocks of these filaments. Shearing and annealing of assembled filaments appeared negligible on a time scale of a few hours. In consequence, filament number and filament length were dependent on the rate at which monomers were supplied to the assembly reaction, and on the number of filaments already present at the start of the assembly reaction.  相似文献   

12.
Hemolysin E (HlyE, ClyA, SheA) is a pore-forming protein toxin isolated from Escherichia coli. The three-dimensional structure of its water-soluble form is known, but that of the membrane-bound HlyE complex is not. We have used electron microscopy and image processing to show that the pores are predominantly octameric. Three-dimensional reconstructions of HlyE pores assembled in lipid/detergent micelles suggest a degree of conformational variability in the octameric complexes. The reconstructed pores were significantly longer than the maximum dimension of the water-soluble molecule, indicating that conformational changes occur on pore formation.  相似文献   

13.
We report studies of the subcellular localization of the ClyA cytotoxic protein and of mutations causing defective translocation to the periplasm in Escherichia coli. The ability of ClyA to translocate to the periplasm was abolished in deletion mutants lacking the last 23 or 11 amino acid residues of the C-terminal region. A naturally occurring ClyA variant lacking four residues (183 to 186) in a hydrophobic subdomain was retained mainly in the cytosolic fraction. These mutant proteins displayed an inhibiting effect on the expression of the hemolytic phenotype of wild-type ClyA. Studies in vitro with purified mutant ClyA proteins revealed that they were defective in formation of pore assemblies and that their activity in hemolysis assays and in single-channel conductance tests was at least 10-fold lower than that of the wild-type ClyA. Tests with combinations of the purified proteins indicated that mutant and wild-type ClyA interacted and that formation of heteromeric assemblies affected the pore-forming activity of the wild-type protein. The observed protein-protein interactions were consistent with, and provided a molecular explanation for, the dominant negative feature of the mutant ClyA variants.  相似文献   

14.
Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells.  相似文献   

15.
Cytolysin A (ClyA) is a pore-forming hemolytic protein encoded by the clyA gene. It has been identified in Salmonella enterica serovars Typhi and Paratyphi A. To identify and characterize the clyA genes in various Salmonella enterica strains, 21 different serotypes of strains isolated from clinical specimens were presently examined. Full-length clyA genes were found in S. enterica serovar Brandenburg, Indiana, Panama, and Schwarzengrund strains by polymerase chain reaction amplification. The ClyA proteins from these four strains showed >97% amino acid identity to that of S. enterica serovar Typhi. Although all four serovars expressed detectable levels of ClyA as determined by Western blot analysis, they did not show a strong hemolytic effect on blood agar, indicating that ClyA may not be efficiently expressed or secreted. Escherichia coli transformed with clyA genes from the four serovars enhanced production of ClyA proteins and hemolytic activities to a level similar to S. enterica serovar Typhi ClyA. The present results suggest that ClyA may play a role in the pathogenesis of S. enterica serovar Brandenburg, Indiana, Panama and Schwarzengrund.  相似文献   

16.
Nucleated assembly of Chlamydomonas and Volvox cell walls   总被引:9,自引:2,他引:7       下载免费PDF全文
The Chlamydomonas reinhardtii cell wall is made up of hydroxyproline-rich glycoproteins, arranged in five distinct layers. The W6 (crystalline) layer contains three major glycoproteins (GP1, GP2, GP3), selectively extractable with chaotropic agents, that self-assemble into crystals in vitro. A system to study W6 assembly in a quantitative fashion was developed that employs perchlorate-extracted Chlamydomonas cells as nucleating agents. Wall reconstitution by biotinylated W6 monomers was monitored by FITC-streptavidin fluorescence and quick-freeze/deep-etch electron microscopy. Optimal reconstitution was obtained at monomer concentrations (0.2-0.3 mg/ml) well below those required for nonnucleated assembly. Assembly occurred from multiple nucleation sites, and faithfully reflected the structure of the intact W6 layer. Specificity of nucleated assembly was demonstrated using two cell-wall mutants (cw-2 and cw-15); neither served as a substrate for assembly of wild-type monomers. In addition, W6 sublayers were assembled from purified components: GP2 and GP3 coassembled to form the inner (W6A) sublayer; this then served as a substrate for self-assembly of GP1 into the outer (W6B) sublayer. Finally, evolutionary relationships between C. reinhardtii and two additional members of the Volvocales (Chlamydomonas eugametos and Volvox carteri) were explored by performing interspecific reconstitutions. Hybrid walls were obtained between C. reinhardtii and Volvox but not with C. eugametos, confirming taxonomic assignments based on structural criteria.  相似文献   

17.
A H Lockwood 《Cell》1978,13(4):613-627
Cytoplasmic microtubule assembly from tubulin monomers requires an accessory protein or proteins present is isolated microtubules. These proteins have been designated "tau" factors. One such factor, tubulin assembly protein (TAP), has been purified to homogeneity from calf brain microtubules. A precipitating, monospecific antibody against the protein has been prepared. The antibody has been used to investigate the mechanism of TAP action in microtubule assembly and the distribution of TAP in cellular microtubules. Immunochemical, immunofluorescent and electron microscopic studies indicate that TAP functions stoichiometrically by binding physically to tubulin to form a complex active in microtubule assembly. TAP is an elongation protein which is required throughout the growth of a microtubule and which is actually present along the entire microtubule. Immunofluorescence microscopy has been used to demonstrate that TAP is distributed throughout the cytoplasmic microtubule network of cultured human, hamster and rat cells-both normal and virally transformed. Immunofluorescence of cells in mitosis shows that TAP is present in the mitotic spindle. These results demonstrate the biological importance of tubulin assembly protein and suggest that it or immunologically related "tau" proteins represent ubiquitous cofactors in cytoplasmic microtubule assembly.  相似文献   

18.
A three-dimensional structural model of an influenza virus ribonucleoprotein particle reconstituted in vivo from recombinant proteins and a model genomic vRNA has been generated by electron microscopy. It shows a circular shape and contains nine nucleoprotein monomers, two of which are connected with the polymerase complex. The nucleoprotein monomers show a curvature that may be responsible for the formation of helical structures in the full-size viral ribonucleoproteins. The monomers show distinct contact boundaries at the two sides of the particle, suggesting that the genomic RNA may be located in association with the nucleoprotein at the base of the ribonucleoprotein complex. Sections of the three-dimensional model show a trilobular morphology in the polymerase complex that is consistent with the presence of its three subunits.  相似文献   

19.
Escherichia coli K-12 carries a gene for a protein denoted ClyA or SheA that can mediate a cytolytic phenotype. The ClyA protein is not expressed at detectable levels in most strains of E. coli, but overproduction suitable for purification was accomplished by cloning the structural gene in an hns mutant strain. Highly purified ClyA protein was cytotoxic to macrophage cells in culture and caused detachment and lysis of the mammalian cells. Results from osmotic protection assays were consistent with the suggestion that the protein formed pores with a diameter of up to 3 nm. Using Acholeplasma laidlawii cells and multilamellar liposomes, we studied the effect of ClyA on membranes with varying compositions and in the presence of different ions. ClyA induced cytolytic release of the fluorescent tracer from carboxyfluorescein-loaded liposomes, and the release was stimulated if cholesterol was present in the membranes whereas addition of calcium had no effect. Pretreatment of the ClyA protein with cholesterol inhibited the pore formation, suggesting that ClyA could bind to cholesterol. Efficient coprecipitation of ClyA with either cholesterol or 1,2,3-trioctadecanoylglycerol in aqueous solutions showed that ClyA directly interacted with the hydrophobic molecular aggregates. We tested the possible functional importance of selected ClyA protein regions by site-directed mutagenesis. Defined mutants of ClyA were obtained with alterations in postulated transmembrane structures in the central part and in a postulated membrane-targeting domain in the C-terminal part. Our results were consistent with the suggestion that particular amphiphilic segments are required for ClyA activity. We propose that these domains are necessary for ClyA to form pores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号