首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Repeated attempts to clone the luxI from Vibrio fischeri ATCC 49387 failed to produce a clone carrying a functional LuxI. Sequence data from the clones revealed the presence of a polymorphism when compared with previously published luxI sequences, prompting further characterization of bioluminescence regulation in V. fischeri ATCC 49387. Further investigation of V. fischeri ATCC 49387 revealed that its LuxI protein lacks detectable LuxI activity due to the presence of a glutamine residue at position 125 in the deduced amino acid sequence. Specific bioluminescence in V. fischeri ATCC 49387 increases with increasing cell density, indicative of a typical autoinduction response. However, conditioned medium from this strain does not induce bioluminescence in an ATCC 49387 luxR-plux-based acyl homoserine lactone reporter strain, but does induce bioluminescence in ATCC 49387. It has been previously shown that a V. fischeri MJ-1 luxI mutant exhibits autoinduction of bioluminescence through N-octanoyl-L-homoserine lactone, the product of the AinS autoinducer synthase. However, a bioreporter based on luxR-plux from V. fischeri ATCC 49387 responded poorly to conditioned medium from V. fischeri ATCC 49387 and also responded poorly to authentic N-octanoyl-DL-homoserine lactone. A similar MJ-1-based bioreporter showed significant induction under the same conditions. A putative ainS gene cloned from ATCC 49387, unlike luxI from ATCC 49387, expresses V. fischeri autoinducer synthase activity in Escherichia coli. This study suggests that a regulatory mechanism independent of LuxR and LuxI but possibly involving AinS is responsible for the control of autoinduction of bioluminescence in V. fischeri ATCC 49387.  相似文献   

6.
Vibrio fischeri is the sole species colonizing the light-emitting organ of the Hawaiian squid, Euprymna scolopes. Upon entering the nascent light organ of a newly hatched juvenile squid, the bacteria undergo morphological and physiological changes that include the loss of flagellation and the induction of bioluminescence. These and other events reveal a pattern of genetic regulation that is a response to the colonization of host tissue. In this study, we isolated and characterized a glnD:mTn5Cm mutant of V. fischeri. In addition to the predicted defects in the efficiency of nitrogen utilization, this glnD mutant had an unexpected reduction in the ability to produce siderophore and grow under iron-limiting conditions. Although the glnD mutant could colonize juvenile squid normally over the first 24 h, it was subsequently unable to persist in the light organ to the usual extent. This persistence phenotype was more severe if the mutant was pregrown under iron-limiting conditions before inoculation, but could be ameliorated by the presence of excess iron. These results indicate that the ability to respond to iron limitation may be an important requirement in the developing symbiosis. Supplying the glnD gene in trans restored normal efficiency of nitrogen use, iron sequestration and colonization phenotypes to the glnD:mTn5Cm mutant; thus, there appears to be a genetic and/or metabolic linkage between nitrogen sensing, siderophore synthesis and symbiosis competence in V. fischeri that involves the glnD gene.  相似文献   

7.
8.
Inactivation of the sapABCDF genes results in a loss of virulence in several bacterial pathogens of animals and plants. The role of this locus in the growth physiology of Vibrio fischeri, and in the symbiotic colonization of the squid Euprymna scolopes was investigated. In rich medium, a V. fischeri sapA insertion mutant grew at only 85% the rate of its wild-type parent. While a similar effect has been attributed to a potassium-transport defect in sap mutants of enteric bacteria, the V. fischeri mutant grew more slowly regardless of the potassium concentration of the medium. Similarly, the growth-rate defect was independent of the source of either carbon, nitrogen, or phosphorous, indicating that the V. fischeri sap genes do not encode functions required for the transport of a specific form of any of these nutrients. Finally, while a delay in colonizing the nascent light organ of the squid could be accounted for by the lower growth rate of the mutant, a small but statistically significant reduction in its final population size in the host, but not in medium, suggests that the sap genes play another role in the symbiosis. All of these phenotypic defects could be genetically complemented in trans by the sapABCDF genes, but not by the sapA gene alone, indicating that the insertion in sapA is polar to the four downstream genes in the locus. Thus, while the sap locus is important to the normal growth of V. fischeri, it plays different physiological roles in growth and tissue colonization than it does in enteric pathogens.  相似文献   

9.
In this study, we investigated the relationship between MgSO(4) and luminescence in Vibrio fischeri under nutrient-starved conditions. When V. fischeri was cultured in an artificial seawater medium, the luminescence intensity was low relative to that observed under normal growth conditions. It decreased during the initial 14 h, and then increased slightly at 24 h. This regulation of luminescence was not dependent on the quorum-sensing mechanism, because the cell densities had not reached a critical threshold concentration. Under MgSO(4)-starved conditions, luminescence was not fully induced at 14 h, and decreased at 24 h. In contrast, induction of luminescence occurred under MgSO(4)-supplemented conditions, but MgSO(4) alone was insufficient to induce luminescence, and required NaHCO(3) or KCl. These results suggest that the luminescence of V. fischeri is controlled by an exogenous sulfur source under nutrient-starved conditions. In addition, they indicate that the induction of sulfur-dependent luminescence is regulated by the NaHCO(3) or KCl concentration.  相似文献   

10.
Vibrio fischeri colonizes the squid Euprymna scolopes in a mutualistic symbiosis. Hatchling squid lack these bacterial symbionts, and V. fischeri strains must compete to occupy this privileged niche. We cloned a V. fischeri gene, designated pilA, that contributes to colonization competitiveness and encodes a protein similar to type IV-A pilins. Unlike its closest known relatives, Vibrio cholerae mshA and vcfA, pilA is monocistronic and not clustered with genes associated with pilin export or assembly. Using wild-type strain ES114 as the parent, we generated an in-frame pilA deletion mutant, as well as pilA mutants marked with a kanamycin resistance gene. In mixed inocula, marked mutants were repeatedly outcompeted by ES114 (P < 0.05) but not by an unmarked pilA mutant, for squid colonization. In contrast, the ratio of mutant to ES114 CFUs did not change during 70 generations of coculturing. The competitive defect of pilA mutants ranged from 1.7- to 10-fold and was more pronounced when inocula were within the range estimated for V. fischeri populations in Hawaiian seawater (200 to 2,000 cells/ml) than when higher densities were used. ES114 also outcompeted a pilA mutant by an average of twofold at lower inoculum densities, when only a fraction of the squid became infected, most by only one strain. V. fischeri strain ET101, which was isolated from Euprymna tasmanica and is outcompeted by ES114, lacks pilA; however, 11 other diverse V. fischeri isolates apparently possess pilA. The competitive defect of pilA mutants suggests that cell surface molecules may play important roles in the initiation of beneficial symbioses in which animals must acquire symbionts from a mixed community of environmental bacteria.  相似文献   

11.
Vibrio fischeri, a luminescent marine bacterium, specifically colonizes the light organ of its symbiotic partner, the Hawaiian squid Euprymna scolopes. In a screen for V. fischeri colonization mutants, we identified a strain that exhibited on average a 10-fold decrease in colonization levels relative to that achieved by wild-type V. fischeri. Further characterization revealed that this defect did not result from reduced luminescence or motility, two processes required for normal colonization. We determined that the transposon in this mutant disrupted a gene with high sequence identity to the pgm (phosphoglucomutase) gene of Escherichia coli, which encodes an enzyme that functions in both galactose metabolism and the synthesis of UDP-glucose. The V. fischeri mutant grew poorly with galactose as a sole carbon source and was defective for phosphoglucomutase activity, suggesting functional identity between E. coli Pgm and the product of the V. fischeri gene, which was therefore designated pgm. In addition, lipopolysaccharide profiles of the mutant were distinct from that of the parent strain and the mutant exhibited increased sensitivity to various cationic agents and detergents. Chromosomal complementation with the wild-type pgm allele restored the colonization ability to the mutant and also complemented the other noted defects. Unlike the pgm mutant, a galactose-utilization mutant (galK) of V. fischeri colonized juvenile squid to wild-type levels, indicating that the symbiotic defect of the pgm mutant is not due to an inability to catabolize galactose. Thus, pgm represents a new gene required for promoting colonization of E. scolopes by V. fischeri.  相似文献   

12.
13.
Shedding light on bioluminescence regulation in Vibrio fischeri   总被引:1,自引:0,他引:1  
The bioluminescence emitted by the marine bacterium Vibrio fischeri is a particularly striking result of individual microbial cells co-ordinating a group behaviour. The genes responsible for light production are principally regulated by the LuxR-LuxI quorum-sensing system. In addition to LuxR-LuxI, numerous other genetic elements and environmental conditions control bioluminescence production. Efforts to mathematically model the LuxR-LuxI system are providing insight into the dynamics of this autoinduction behaviour. The Hawaiian squid Euprymna scolopes forms a natural symbiosis with V. fischeri, and utilizes the symbiont-derived bioluminescence for certain nocturnal behaviours, such as counterillumination. Recent work suggests that the tissue with which V. fischeri associates not only can detect bioluminescence but may also use this light to monitor the V. fischeri population.  相似文献   

14.
Lupp C  Ruby EG 《Journal of bacteriology》2005,187(11):3620-3629
Vibrio fischeri possesses two quorum-sensing systems, ain and lux, using acyl homoserine lactones as signaling molecules. We have demonstrated previously that the ain system activates luminescence gene expression at lower cell densities than those required for lux system activation and that both systems are essential for persistent colonization of the squid host, Euprymna scolopes. Here, we asked whether the relative contributions of the two systems are also important at different colonization stages. Inactivation of ain, but not lux, quorum-sensing genes delayed initiation of the symbiotic relationship. In addition, our data suggest that lux quorum sensing is not fully active in the early stages of colonization, implying that this system is not required until later in the symbiosis. The V. fischeri luxI mutant does not express detectable light levels in symbiosis yet initiates colonization as well as the wild type, suggesting that ain quorum sensing regulates colonization factors other than luminescence. We used a recently developed V. fischeri microarray to identify genes that are controlled by ain quorum sensing and could be responsible for the initiation defect. We found 30 differentially regulated genes, including the repression of a number of motility genes. Consistent with these data, ain quorum-sensing mutants displayed an altered motility behavior in vitro. Taken together, these data suggest that the sequential activation of these two quorum-sensing systems with increasing cell density allows the specific regulation of early colonization factors (e.g., motility) by ain quorum sensing, whereas late colonization factors (e.g., luminescence) are preferentially regulated by lux quorum sensing.  相似文献   

15.
Upon hatching, the Hawaiian squid Euprymna scolopes is rapidly colonized by its symbiotic partner, the bioluminescent marine bacterium Vibrio fischeri . Vibrio fischeri cells present in the seawater enter the light organ of juvenile squid in a process that requires bacterial motility. In this study, we investigated the role chemotaxis may play in establishing this symbiotic colonization. Previously, we reported that V.?fischeri migrates toward numerous attractants, including N-acetylneuraminic acid (NANA), a component of squid mucus. However, whether or not migration toward an attractant such as squid-derived NANA helps the bacterium to localize toward the light organ is unknown. When tested for the ability to colonize juvenile squid, a V. fischeri chemotaxis mutant defective for the methyltransferase CheR was outcompeted by the wild-type strain in co-inoculation experiments, even when the mutant was present in fourfold excess. Our results suggest that the ability to perform chemotaxis is an advantage during colonization, but not essential.  相似文献   

16.
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.  相似文献   

17.
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.  相似文献   

18.
19.
Lin M  Oliver DJ 《Plant physiology》2008,147(4):1822-1829
The acs1 knockout mutant that has a disruption in the plastidic acetyl-coenzyme A (CoA) synthetase (ACS; At5g36880) gene was used to explore the role of this protein and plastidic acetate metabolism in Arabidopsis (Arabidopsis thaliana). Disruption of the ACS gene decreased ACS activity by 90% and largely blocked the incorporation of exogenous (14)C-acetate and (14)C-ethanol into fatty acids. Whereas the disruption had no significant effect on the synthesis of bulk seed triacylglycerols, the acs1 plants were smaller and flowered later. This suggests that the pyruvate dehydrogenase bypass provided by the aerobic fermentation pathway that converts pyruvate to acetate and probably on to fatty acids is important to the plants during normal growth. The role of ACS in destroying fermentative intermediates is supported by the increased sensitivity of the acs1 mutant to exogenous acetate, ethanol, and acetaldehyde compared to wild-type plants. Whereas these observations suggest that flux through the aerobic fermentation pathway is important, the reason for this flux is unclear. Interestingly, acetate is able to support high rates of plant growth on medium and this growth is blocked in the acs1 mutant.  相似文献   

20.
Cells of Escherichia coli growing on sugars that result in catabolite repression or amino acids that feed into glycolysis undergo a metabolic switch associated with the production and utilization of acetate. As they divide exponentially, these cells excrete acetate via the phosphotransacetylase-acetate kinase pathway. As they begin the transition to stationary phase, they instead resorb acetate, activate it to acetyl coenzyme A (acetyl-CoA) by means of the enzyme acetyl-CoA synthetase (Acs) and utilize it to generate energy and biosynthetic components via the tricarboxylic acid cycle and the glyoxylate shunt, respectively. Here, we present evidence that this switch occurs primarily through the induction of acs and that the timing and magnitude of this induction depend, in part, on the direct action of the carbon regulator cyclic AMP receptor protein (CRP) and the oxygen regulator FNR. It also depends, probably indirectly, upon the glyoxylate shunt repressor IclR, its activator FadR, and many enzymes involved in acetate metabolism. On the basis of these results, we propose that cells induce acs, and thus their ability to assimilate acetate, in response to rising cyclic AMP levels, falling oxygen partial pressure, and the flux of carbon through acetate-associated pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号