共查询到20条相似文献,搜索用时 0 毫秒
1.
Javitch JA Shi L Simpson MM Chen J Chiappa V Visiers I Weinstein H Ballesteros JA 《Biochemistry》2000,39(40):12190-12199
The binding site of the dopamine D2 receptor, like that of homologous G-protein-coupled receptors (GPCRs), is contained within a water-accessible crevice formed among its seven transmembrane segments (TMSs). Using the substituted-cysteine-accessibility method (SCAM), we are mapping the residues that contribute to the surface of this binding-site crevice. We have mutated to cysteine, one at a time, 21 consecutive residues in the fourth TMS (TM4). Eleven of these mutants reacted with charged sulfhydryl-specific reagents, and bound antagonist protected nine of these from reaction. For the mutants in which cysteine was substituted for residues in the cytoplasmic half of TM4, treatment with the reagents had no effect on binding, consistent with these residues being inaccessible and with the low-resolution structure of the homologous rhodopsin, in which TM3 and TM5 occlude the cytoplasmic half of TM4. Although hydrophobicity analysis positions the C-terminus of TM4 at 4.64, Pro-Pro and Pro-X-Pro motifs, which are known to disrupt alpha-helices, occur at position 4.59 in a number of homologous GPCRs. The SCAM data were consistent with a C-terminus at 4.58, but it is also possible that the alpha-helix extends one additional turn to 4.62 in the D2 receptor, which has a single Pro at 4.59. In homologous GPCRs, the high degree of sequence variation between 4.59 and 4.68 is more characteristic of a loop domain than a helical segment. This region is shown here to be very conserved within functionally related receptors, suggesting an important functional role for this putative nonhelical domain. This inference is supported by observed ligand-specific effects of mutations in this region and by the predicted spatial proximity of this segment to known ligand binding sites in other TMs. 相似文献
2.
The binding site of the dopamine D2 receptor, like that of homologous G-protein-coupled receptors (GPCRs), is contained within a water-accessible crevice formed among its seven transmembrane segments (TMs). Using the substituted-cysteine-accessibility method (SCAM), we are mapping the residues that contribute to the surface of this binding-site crevice. We have now mutated to cysteine, one at a time, 21 consecutive residues in TM1. Six of these mutants reacted with charged sulfhydryl reagents, whereas bound antagonist only protected N52(1.50)C from reaction. Except for A38(1.36)C, none of the substituted cysteine mutants in the extracellular half of TM1 appeared to be accessible. Pro(1.48) is highly conserved in opsins, but absent in catecholamine receptors, and the high-resolution rhodopsin structure showed that Pro(1.48) bends the extracellular portion of TM1 inward toward TM2 and TM7. Analysis of the conversation of residues in the extracellular portion of TM1 of opsins showed a pattern consistent with alpha-helical structure with a conserved face. In contrast, this region in catecholamine receptors is poorly conserved, suggesting a lack of critical contacts. Thus, in catecholamine receptors in the absence of Pro(1.48), TM1 may be straighter and therefore further from the helix bundle, consistent with the apparent lack of conserved contact residues. When examined in the context of a model of the D2 receptor, the accessible residues in the cytoplasmic half of TM1 are at the interface with TM7 and with helix 8 (H8). We propose the existence of critical contacts of TM1, TM7, and H8 that may stabilize the inactive state of the receptor. 相似文献
3.
Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter. 相似文献
4.
de la Fuente M Noble DN Verma S Nieman MT 《The Journal of biological chemistry》2012,287(13):10414-10423
Thrombin activates platelets by binding and cleaving protease-activated receptors 1 and 4 (PAR1 and PAR4). Because of the importance of PAR4 activation on platelets in humans and mice and emerging roles for PAR4 in other tissues, experiments were done to characterize the interaction between PAR4 homodimers. Bimolecular fluorescence complementation and bioluminescence resonance energy transfer (BRET) were used to examine the PAR4 homodimer interface. In bimolecular fluorescence complementation experiments, PAR4 formed homodimers that were disrupted by unlabeled PAR4 in a concentration-dependent manner, but not by rhodopsin. In BRET experiments, the PAR4 homodimers showed a specific interaction as indicated by a hyperbolic BRET signal in response to increasing PAR4-GFP expression. PAR4 did not interact with rhodopsin in BRET assays. The threshold maximum BRET signal was disrupted in a concentration-dependent manner by unlabeled PAR4. In contrast, rhodopsin was unable to disrupt the BRET signal, indicating that the disruption of the PAR4 homodimer is not due to nonspecific interactions. A panel of rho-PAR4 chimeras and PAR4 point mutants has mapped the dimer interface to hydrophobic residues in transmembrane helix 4. Finally, mutations that disrupted dimer formation had reduced calcium mobilization in response to the PAR4 agonist peptide. These results link the loss of dimer formation to a loss of PAR4 signaling. 相似文献
5.
R Dal Toso B Sommer M Ewert A Herb D B Pritchett A Bach B D Shivers P H Seeburg 《The EMBO journal》1989,8(13):4025-4034
Cloned human dopamine D2 receptor cDNA was isolated from a pituitary cDNA library and found to encode an additional 29 amino acid residues in the predicted intracellular domain between transmembrane regions 5 and 6 relative to a previously described rat brain D2 receptor. Results from polymerase chain reactions as well as in situ hybridization revealed that mRNA encoding both receptor forms is present in pituitary and brain of both rat and man. The larger form was predominant in these tissues and, as shown in the rat, expressed by dopaminergic and dopaminoceptive neurons. Analysis of the human gene showed that the additional peptide sequence is encoded by a separate exon. Hence, the two receptor forms are generated by differential splicing possibly to permit coupling to different G proteins. Both receptors expressed in cultured mammalian cells bind [3H]spiperone with high affinity and inhibit adenylyl cyclase, as expected of the D2 receptor subtype. 相似文献
6.
Two forms of the rat D2 dopamine receptor as revealed by the polymerase chain reaction 总被引:2,自引:0,他引:2
We have used the polymerase chain reaction technique (PCR) to clone the cDNA of the D2 dopamine receptor from rat striatal mRNA. Two major PCR products were produced; one product was identical to a previously published rat cDNA, while the other, more abundant product differed only by an 87-nucleotide insert located in the region of the putative third cytoplasmic loop of the D2 receptor. A PCR approach for determining message abundance was used to determine the relative message abundance of the two forms of the D2 receptor in a variety of tissues. Possible implications of the two forms of the D2 receptor for dopamine-mediated signal transduction are discussed. 相似文献
7.
Horisberger JD Kharoubi-Hess S Guennoun S Michielin O 《The Journal of biological chemistry》2004,279(28):29542-29550
The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump. 相似文献
8.
N J Pollock A M Manelli C W Hutchins M E Steffey R G MacKenzie D E Frail 《The Journal of biological chemistry》1992,267(25):17780-17786
Several serines present in transmembrane domain V are conserved among members of the G-protein-coupled receptor family that bind catecholamines. Two of these serines that are present in the beta-adrenergic receptor were previously shown by site-directed mutagenesis to affect agonist binding and receptor activation (Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S., and Dixon, R. A. F. (1989) J. Biol. Chem. 264, 13572-13578). We investigated the role of the serines present in transmembrane V of another catecholamine receptor, the dopamine D1 receptor, by site-directed mutagenesis, and the results show that mutations at serines 198, 199, and 202 affect dopamine binding. The substitution of serine 198 or serine 199 by an alanine also affects the binding of several other agonist and antagonist dopaminergic compounds while an alanine substitution at serine 202 has no effect on the binding of these compounds. Moreover, each single serine mutation decreased the maximal cAMP accumulation elicited by a dopamine D1 partial agonist. These results suggest that serines present in transmembrane V of the D1 receptor affect ligand interactions and receptor signal transduction, but not entirely in the manner that would be predicted from the model proposed for the beta-adrenergic receptor. 相似文献
9.
D2 dopamine receptors have been extracted from bovine brain using the detergent cholate and purified approximately 20,000-fold by affinity chromatography on haloperidol-sepharose and wheat germ agglutinin-agarose columns. The purified preparation contains D2 dopamine receptors as judged by the pharmacological specificity of [3H]spiperone binding to the purified material. The sp. act. of [3H]spiperone binding in the purified preparation is 2.5 nmol/mg protein. The purified preparation shows a major diffuse band at Mr 95,000 upon SDS-polyacrylamide gel electrophoresis and there is evidence for microheterogeneity either at the protein or glycosylation level. Photoaffinity labelling of D2 dopamine receptors also shows a species of Mr 95,000. The D2 dopamine receptor therefore is a glycoprotein of Mr 95,000. 相似文献
10.
We have identified and characterized the cDNAs corresponding to the mouse D2 dopamine receptors. We show that in the mouse the D2 dopamine receptor is found in two forms, generated by alternative splicing of the same gene, mRNA distribution analysis of areas expressing the D2 receptors shows that the larger form is the most abundant, except in the brain stem where the shorter form is predominant. Membranes of mammalian cells transiently transfected with both forms of D2 receptor bind [3H]spiperone with a high affinity. 相似文献
11.
The neurotransmitter, dopamine, binds to dopamine receptor (DR), and is involved in several functions of the brain, such as initiation and execution of movement, emotion, prolactin secretion, etc. Of all the five DRs, D2 dopamine receptor has maximal affinity for dopamine. D2 has a short isoform, D2S, and a long isoform D2L. D2L is longer than D2S by 29 amino acid residues. We studied the expression of the gene and protein of D2 receptor in the cerebral and cerebellar cortices of the brain of new born, developing, adult, and old male mice to find out: (i) at what stage of development, expression of the gene peaks and (ii) if it undergoes any changes as the animal ages, which may account for the neurodegenerative changes and symptoms of Parkinson's and other diseases seen in old age. RT-PCR and Western blot studies show that peak expression of D2 gene occurs in the cerebral and cerebellar cortices around 15-day after birth. We speculate that the majority of dopaminergic synapses are established and possibly become functional in the brain around 15-day after birth. The expression of D2 receptor is upregulated in the cerebral cortex in old mice. However, it is down-regulated in the cerebellar cortex. 相似文献
12.
A polyclonal antibody to dopamine D2 receptor (D2-receptor) has been used to examine the immuno-inhibition in the binding of a D2 antagonist, [3H]YM09151-2 and an agonist, PPHT-fluorescein to dopamine receptor DNA transfected mouse fibroblast cells. The specific activity of the [3H]YM09151-2 binding to transfected (Ltk-RGB) cells is 4-5 fold higher than untransfected (Ltk-) cells. The antibody is able to inhibit the [3H]YM09151-2 binding to the cell membranes from Ltk-RGB cells (Bmax 110.56 +/- 5.26 and 76.20 +/- 5.18 fmoles/mg protein in the presence of preimmune and immune sera, respectively, with no change in the Kd). The flow cytometric analysis of the PPHT-fluorescein labeled Ltk- and Ltk-RGB cells indicated that ligand specific fluorescence is associated only with small Ltk-RGB cells (second peak) and autofluorescence with large cells (first peak). Preincubation of the Ltk-RGB cells with antibody, reduced the fluorescence intensity of the PPHT-fluorescein by 20-25% without changing the auto-fluorescence. These results suggest that peptide antibody recognize D2-receptor in both membranes and in intact cells and interact at or near the ligand binding site of the receptor. 相似文献
13.
Klammt C Srivastava A Eifler N Junge F Beyermann M Schwarz D Michel H Doetsch V Bernhard F 《The FEBS journal》2007,274(13):3257-3269
The functional and structural characterization of G-protein-coupled receptors (GPCRs) still suffers from tremendous difficulties during sample preparation. Cell-free expression has recently emerged as a promising alternative approach for the synthesis of polytopic integral membrane proteins and, in particular, for the production of G-protein-coupled receptors. We have now analyzed the quality and functional folding of cell-free produced human endothelin type B receptor samples as an example of the rhodopsin-type family of G-protein-coupled receptors in correlation with different cell-free expression modes. Human endothelin B receptor was cell-free produced as a precipitate and subsequently solubilized in detergent, or was directly synthesized in micelles of various supplied mild detergents. Purified cell-free-produced human endothelin B receptor samples were evaluated by single-particle analysis and by ligand-binding assays. The soluble human endothelin B receptor produced is predominantly present as dimeric complexes without detectable aggregation, and the quality of the sample is very similar to that of the related rhodopsin isolated from natural sources. The binding of human endothelin B receptor to its natural peptide ligand endothelin-1 is demonstrated by coelution, pull-down assays, and surface plasmon resonance assays. Systematic functional analysis of truncated human endothelin B receptor derivatives confined two key receptor functions to the membrane-localized part of human endothelin B receptor. A 39 amino acid fragment spanning residues 93-131 and including the proposed transmembrane segment 1 was identified as a central area involved in endothelin-1 binding as well as in human endothelin B receptor homo-oligomer formation. Our approach represents an efficient expression technique for G-protein-coupled receptors such as human endothelin B receptor, and might provide a valuable tool for fast structural and functional characterizations. 相似文献
14.
Immunostimulating activity of specific postsynaptic D2 receptor agonist quinpirole (Ly 171555) was studied in CBA mice. The drug was administered intraperitoneally in a dose of 1 mg/kg 30 min before the immunization with SRBC (5 x 10(8)). Considerable stimulation of rosette- and plaque-forming cell number was observed at the early stage (3-d day) and at more late stage of the immune response (5-th day). The increase of rosette- and plaque-forming cell number was provided by IgM-reaction enhancement. 相似文献
15.
Robertson B Huerta-Ocampo I Ericsson J Stephenson-Jones M Pérez-Fernández J Bolam JP Diaz-Heijtz R Grillner S 《PloS one》2012,7(4):e35642
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. 相似文献
16.
The distribution of a dopamine D2 receptor mRNA in rat brain 总被引:4,自引:0,他引:4
Based on the recently reported sequence of a dopamine D2 receptor cloned from rat brain, we prepared a series of cDNA probes to determine the distribution of mRNA encoding this receptor. Within the forebrain, D2 receptor mRNA is abundant in the caudate-putamen, accumbens nucleus and olfactory tubercle. Moderate to low levels of mRNA are observed in the medial habenular nucleus, diagonal band, lateral septal nucleus, claustrum, dorsal endopiriform nucleus, and entorhinal cortex. In the mesencephalon, D2 receptor mRNA is abundant within the substantia nigra, pars compacta, and the ventral tegmental area. Comparison of the distribution of the mRNA and ligand binding indicates that both presynaptic and postsynaptic D2 receptors of the nigrostriatal, mesolimbic and mesocortical pathways are derived from the same mRNA. 相似文献
17.
Three conserved serine residues (Ser193, Ser194, and Ser197) in transmembrane spanning region (TM) V of the D2 dopamine receptor have been mutated to alanine, individually and in combination, to explore their role in ligand binding and G protein coupling. The multiple Ser -->Ala mutations had no effect on the binding of most antagonists tested, including [3H]spiperone, suggesting that the multiple mutations did not affect the overall conformation of the receptor protein. Double or triple mutants containing an Ala197 mutation showed a decrease in affinity for domperidone, whereas Ala193 mutants showed an increased affinity for a substituted benzamide, remoxipride. However, dopamine showed large decreases in affinity (>20-fold) for each multiple mutant receptor containing the Ser193Ala mutation, and the high-affinity (coupled) state of the receptor (in the absence of GTP) could not be detected for any of the multiple mutants. A series of monohydroxylated phenylethylamines and aminotetralins was tested for their binding to the native and multiple mutant D2 dopamine receptors. The results obtained suggest that Ser193 interacts with the hydroxyl of S-5-hydroxy-2-dipropylaminotetralin (OH-DPAT) and Ser197 with the hydroxyl of R-5-OH-DPAT. We predict that Ser193 interacts with the hydroxyl of R-7-OH-DPAT and the 3-hydroxyl (m-hydroxyl) of dopamine. Therefore, the conserved serine residues in TMV of the D2 dopamine receptor are involved in hydrogen bonding interactions with selected antagonists and most agonists tested and also enable agonists to stabilise receptor-G protein coupling. 相似文献
18.
19.
Several tryptophan (Trp) residues are conserved in G protein-coupled receptors (GPCRs). Relatively little is known about the contribution of these residues and especially of those in the fourth transmembrane domain in the function of the CB(2) cannabinoid receptor. Replacing W158 (very highly conserved in GPCRs) and W172 (conserved in CB(1) and CB(2) cannabinoid receptors but not in many other GPCRs) of the human CB(2) receptor with A or L or with F or Y produced different results. We found that the conservative change of W172 to F or Y retained cannabinoid binding and downstream signaling (inhibition of adenylyl cyclase), whereas removal of the aromatic side chain by mutating W172 to A or L eliminated agonist binding. W158 was even more sensitive to being mutated. We found that the conservative W158F mutation retained wild-type binding and signaling activities. However, W158Y and W158A mutants completely lost ligand binding capacity. Thus, the Trp side chains at positions 158 and 172 seem to have a critical, but different, role in cannabinoid binding to the human CB(2) receptor. 相似文献
20.
Liu Y Buck DC Macey TA Lan H Neve KA 《Journal of receptor and signal transduction research》2007,27(1):47-65
The Ca2+ sensor calmodulin (CaM) regulates numerous proteins involved in G protein-coupled receptor (GPCR) signaling. CaM binds directly to some GPCRs, including the dopamine D2 receptor. We confirmed that the third intracellular loop of the D2 receptor is a direct contact point for CaM binding using coimmunoprecipitation and a polyHis pull-down assay, and we determined that the D2-like receptor agonist 7-OH-DPAT increased the colocalization of the D2 receptor and endogenous CaM in both 293 cells and in primary neostriatal cultures. The N-terminal three or four residues of D2-IC3 were required for the binding of CaM; mutation of three of these residues in the full-length receptor (I210C/K211C/I212C) decreased the coprecipitation of the D2 receptor and CaM and also significantly decreased D2 receptor signaling, without altering the coupling of the receptor to G proteins. Taken together, these findings suggest that binding of CaM to the dopamine D2 receptor enhances D2 receptor signaling. 相似文献