首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Luz MR  Bertan CM  Binelli M  Lopes MD 《Theriogenology》2006,66(6-7):1436-1441
The canine corpus luteum (CL) typically sustains elevated plasma progesterone concentrations for 2 months or more, with a peak approximately 15-25 days after ovulation, followed by a slow decline. The processes involved in the slow, protracted regression of the CL over the remaining 1.5-2-month period in nonpregnant bitches and until shortly prepartum in pregnant bitches are not well characterized. The rapid luteolysis that occurs immediately prepartum appears to be a result of a prepartum rise in peripheral PGF. The potential role of PGF in the slow regression process in the several weeks preceding parturition and in nonpregnant bitches after 15-25 days after ovulation is not known. Therefore, plasma concentrations of 13,14-dihydro-15-keto-prostaglandin F2-alpha (PGFM), progesterone (P4) and estradiol (E2) were determined and compared in bitches during nonpregnant diestrus (n = 9) or pregnancy (n = 8). During the gradual decrease in plasma concentrations of progesterone in both groups, the P4 pattern appeared unrelated to changes in either E2 or PGFM concentrations. The PGFM pattern was different between diestrus and pregnant bitches (P > 0.01); there was an apparent progressive but slow increase in PGFM in pregnant bitches from Days 30 to 60, followed by a large increase prior to parturition; concentrations declined immediately postpartum. However, there were no increases in PGFM during the same interval in nonpregnant bitches. Mean estradiol concentrations were sporadically elevated during the last third of pregnancy and less so in nonpregnant diestrus; there was no acute prepartum increase in estradiol associated with the PGFM increase. In summary, although there were no apparent changes in peripheral PGF2alpha concentration involved in regulating the slow protracted phase of luteal regression in nonpregnant bitches, modest increases in PGFM may play a role in ovarian function after mid-gestation in pregnant bitches. Furthermore, the acute prepartum rise in PGFM was not dependent on any concomitant increase in estradiol concentrations.  相似文献   

2.
Luz MR  Cesário MD  Binelli M  Lopes MD 《Theriogenology》2006,66(6-7):1448-1453
The present study evaluated the occurrence of apoptosis and caspase-3 activity in the canine corpus luteum during the period of luteal regression in eight pregnant and nine nonpregnant diestrus bitches. Intact luteal cells were obtained from corpora lutea in both peripartum pregnant bitches and nonpregnant diestrus bitches at approximately 65 d (range 63-68) after estrus, but not at days 75 and 85 in nonpregnant bitches. In all bitches, apoptotic cells were rarely detected and when present, those cells were more easily detected using the hematoxylin and eosin technique than using the critical electrolyte concentration technique. The luteal structures at 75 and 85 d of diestrus had histological characteristics similar to a corpus albicans. Caspase-3 activity was detected in morphologically normal corpora lutea from both pregnant and diestrus bitches around day 65, and also in the later structures considered corpus albicans tissue. These results suggested that apoptosis may not be the major mechanism involved in canine functional luteal regression, and that caspase-3 participated in both functional and morphological luteolysis and in the tissue reorganization involved in corpus albicans formation.  相似文献   

3.
Luz MR  Bertan CM  Binelli M  Lopes MD 《Theriogenology》2006,66(6-7):1442-1447
To better understand the process of slow luteal regression of the nonpregnant cycle in dogs and the acute luteolysis that occurs prepartum, the present study investigated in vitro PGF2alpha production by the endometrium, corpus luteum and placental explants obtained at known times of the cycle from pregnant bitches (days 63, 64 and immediately postpartum; day 0 = estimated day of the ovulatory LH surge) and from nonpregnant diestrus bitches (approximately days 65, 75 and 85). Both basal PGF2alpha production and its production in the presence of the protein kinase C (PKC) stimulator 12,13-phorbol dibutyrate (PDBu) were determined. For PDBu-supplemented incubations, mean PGF2alpha production (pg/mL/mg/6 h) by endometrium explants of the nonpregnant bitches in late diestrus was highest on day 65 (205 +/- 87) and reduced to low levels (38 +/- 17 and 11 +/- 11) on days 75 and 85, respectively. The production by corpus luteum explants from these bitches was significantly less on day 65 (46 +/- 14) than that of the day 65 endometrium explants, and was slightly increased on day 85 (103 +/- 52). The corresponding mean PGF2alpha production by the endometrium explants of pregnant bitches was on average much greater (i.e., two to three-fold) compared to nonpregnant bitches (P < 0.01) and involved high concentrations at day 64 (1523 +/- 467) and postpartum, compared to somewhat lower levels on day 63 (830+/-65); luteal PGF production (165 +/- 4) was also higher than in nonpregnant bitches around day 65. For pregnant bitches, PGF production per gram of tissue in the endometrium explants was greater than for the CL or placenta explants (180 +/- 37). Therefore, the endometrium of the pregnant bitch has an increased capability to produce PGF2alpha immediately prepartum, which on a tissue weight basis, exceeds that of either corpora lutea or the placenta. However, assuming a larger mass of placental tissue in vivo, we inferred that the placenta may contribute substantially to peripheral PGF concentrations.  相似文献   

4.
Luteal phase plasma progesterone was radioimmunoassayed in samples collected before, during, and after a 72 hr treatment period during which Beagle bitches received repeated i.m. injections of prostaglandin F2α (n=17) or saline (n=3). PGF2α (20 ug/kg every 8 hr or 30 ug/kg every 12 hr) was administered to 7 pregnant and 8 nonpregnant bitches during the mid or late luteal phase of the cycle (Day 25–58) and to 2 nonpregnant bitches during the early luteal phase (Days 5 and 20). Progesterone was depressed from pretreatment levels (3 – 40 ng/ml) in each of the 15 bitches given PGF2α after Day 25 of the cycle. Mean progesterone (ng/ml plasma) at ?24, 0, 12, 24, 36, 48, 60, 72 and 96 hr from the initial PGF2α injection were 16.6, 15.6, 9.3, 5.1, 2.1, 1.5, 1.4, 1.1 and 1.1 (±0.9, n=15). Thereafter, progesterone was nondetectable in the 8 nonpregnant bitches and in 4 pregnant bitches that aborted. Abortions occurred when progesterone was depressed to 0.6 – 1.4 ng/ml, 56–80 hr after starting PGF2α treatment on Days 33–53 of the cycle. Three pregnant bitches did not abort when progesterone was depressed to a mean low value of 2.1 ng/ml during PGF2α treatments begun on Day 31 – 40 of pregnancy. Progesterone in these bitches recovered to 5 – 10 ng/ml and was maintained until the normal prepartum decline. Since PGF2α can induce complete luteolysis it may be of use as an abortifacient in the bitch.A transient fall in rectal temperature occurred in each of 12 luteal phase bitches injected with PGF2α (20 ug/kg, i.m.). The hypothermia was detectable within 15 min, maximal at 45 – 60 min, and averaged 1.39° C. No temperature changes were noted in eight ovariectomized bitches similarly treated. In six luteal phase bitches, plasma progesterone fell 20–45% within the 15 min required to observe a consistent decline in rectal temperature following PGF2α administration. The transient hypothermia following PGF2α appears to be secondary to the luteolytic effect and dependent on a fall in progesterone.  相似文献   

5.
In the dog, unlike most other domestic animal species, corpus luteum (CL) life span is not affected by hysterectomy. Only in pregnant dogs, during the immediate prepartum decline of progesterone, does PGF2alpha clearly seem to act as an endogenous luteolytic agent. Whether endogenous PGF2alpha plays a role in the slow regression of the corpora lutea of the nonpregnant cycle is not known. To test for possible paracrine/autocrine effects of locally produced PGF2alpha, luteal expression of the key rate-limiting enzymes in prostaglandin biosynthesis, i.e. cyclooxygenase 1 and 2 (Cox1 and Cox2), was examined in dogs during diestrus, including the periods of CL formation, as well as early and late CL regression. Corpora lutea were collected by ovariohysterectomy from nonpregnant bitches 5, 15, 25, 35, 45 and 65 days after ovulation. On the mRNA-level, expression of Cox1 and Cox2 was tested by qualitative and quantitative, Real Time (Taq Man) RT-PCR; on the protein level, expression of Cox2 was studied by immunohistochemistry. The mRNA for Cox1 and Cox2 were detected at all stages of diestrus. Expression of Cox1 was lowest on Day 5 (ovulation = Day 0) and higher and nearly constant thereafter. Expression of Cox2-mRNA was distinctly cycle related and highest on Day 5; it decreased by Day 15 and remained constantly low until Day 65. Immunohistochemistry localized expression of Cox2 in the cytoplasm of luteal cells. Staining was restricted to Days 5 and 15, with stronger signals on Day 5. These data suggested that increased expression of Cox2 is associated with luteal growth and development and not luteal regression. Furthermore, the expression of Cox1 more likely reflected activity of a housekeeping gene.  相似文献   

6.
Florida manatees (Trichechus manatus latirostris) have relatively low peripheral concentrations of progesterone (P4). The objective of this study was to determine if these relatively low P4 concentrations are associated with a high ratio of progestin metabolites and to document metabolite concentrations from individual blood samples obtained from manatees during diestrus or pregnancy. Metabolites known to exist in elephants—terrestrial manatee relatives—were targeted. These included 5α-reduced progestins (5α-pregnane-3,20-dione [5α-DHP] and 3α-hydroxy-5α-pregnan-20-one [5α-P3-OH]) and 17α-hydroxyprogesterone (17α-OHP), which occurs in Asian elephants. An additional, inactive metabolite, 20α-hydroxyprogesterone (20α-OHP), indicative of P4 overproduction, was also targeted. Progesterone itself was the predominant progestin detected in pregnant and nonpregnant manatee plasma (n = 10) using gas chromatography-mass spectrometry with tandem quadrupole detectors (GC/MS/MS). Progesterone concentrations in pregnant females varied from early (moderate to high) through mid and late (low) pregnancy. Progesterone concentrations ranged from low to high in nonpregnant, nonlactating females. The most commonly detected metabolite was 5α-P3-OH (n = 7), which occurred in pregnant (lower limit of detection [LLOD] to high) and nonpregnant (trace to high) females. The 5α-DHP metabolite was also detected in pregnant (LLOD to moderate) and nonpregnant (low) females. The 17α-OHP metabolite was not detected in any tested female. The 20α-OHP metabolite was detected in one nonpregnant, nonlactating, captive female (LLOD). Metabolites were most prevalent during early pregnancy, concurrent with maximum P4 concentrations. Based on their concentrations in peripheral circulation, we inferred that these metabolites may have, opposite to elephants, a limited physiologic role during luteal, pregnant, and nonpregnant phases in the manatee.  相似文献   

7.
Luteolysis was induced in 5 experimental Beagle (8 cycles) and 7 client-owned bitches treated with 150 to 200 microg/kg, sc of prostaglandin F2alpha administered twice daily for 4 d, starting on Days 8 to 19 after the onset of cytological diestrus. Five experimental Beagle bitches had been mated during the estrus preceding treatment, and copulation had been confirmed in 2/7 client-owned bitches presented for termination of unwanted pregnancy. Serum progesterone concentration (mean +/- SD) declined from 26.1 +/- 66 ng/ml before treatment to 0.3 +/- 0.4 ng/ml on the fourth day of treatment One of the 7 client-owned bitches maintained her pregnancy even though serum progesterone concentrations were less than 0.5 ng/ml on the third and fourth day of treatment. Mean (+/- SEM) inter-estrous intervals before and following prostaglandin-induced luteolysis were 207.3 +/- 12.4 (n = 11 cycles in 6 bitches) and 95.5 +/- 20.0 d (n = 6 cycles in the same 6 bitches; P < 0.0001), respectively These results suggest that effective prostaglandin-induced luteolysis can be achieved with administration of 180 microg/kg during the third week of diestrus in pregnant and nonpregnant bitches.  相似文献   

8.
Concentrations of testosterone and of androstenedione were determined by radioimmunoassay in serum samples collected every 2-5 days throughout the periovulatory and luteal phases of the ovarian cycles of pregnant and nonpregnant beagle bitches. Testosterone levels were consistently lower than those of androstenedione, reached peaks of 29 +/- 4 ng/dl near the time of the preovulatory luteinizing hormone peak, and were reduced to near the limits of detection (less than or equal to 5-10 ng/dl) throughout the luteal phase. Androstenedione levels reached preovulatory peaks of 73 +/- 13 ng/dl, were 54 +/- 7 ng/ml during early estrus, increased (P less than 0.05) to early luteal phase peaks of 76 +/- 8 ng/dl between Days 6 and 18, and then declined to 41 +/- 5 ng/dl by Day 35-40 in both pregnant (n = 8) and nonpregnant (n = 4) bitches. Subsequent protracted increases in androstenedione occurred in 4 of 8 pregnancies but in none of the nonpregnant bitches. From Days 42 to 64 the differences in mean levels between pregnant (45 +/- 2 ng/ml) and nonpregnant (32 +/- 3 ng/ml) bitches was not significant (P greater than 0.05). At parturition androstenedione levels fell (P less than 0.05) abruptly from 39 +/- 7 to 13 +/- 3 ng/dl. These results suggest that, in the bitch, androstenedione is the major circulating androgen during the follicular and luteal phases and that patterns of androstenedione levels during the luteal phase parallel those reported for progesterone in pregnant and nonpregnant bitches, including maintenance of elevated levels throughout gestation and an abrupt decline at parturition.  相似文献   

9.
The purpose of the present study was to evaluate the change in cross-sectional area of the early corpus luteum (CL) and progesterone production in relation to subsequent pregnancy diagnosis. The cross-sectional area of the CL of 75 Friesian brood mares was measured by ultrasonography on Day 1 or 2 and Day 8 or 9 after ovulation. The change in cross-sectional area was expressed in a volume ratio. Plasma progesterone concentrations were measured on Days 8 to 9, and ultrasonography to determine pregnancy status was carried out on Day 17. The data obtained were analyzed by using a multiple logistic regression model. There were significant differences in the age, volume ratio and progesterone concentration between pregnant and nonpregnant mares. Pregnancy on Day 17 was related to the change in size of the CL up to Days 8 to 9 and progesterone concentration on Days 8 to 9. These differences between pregnant and nonpregnant mares might reflect the first luteal response to pregnancy.  相似文献   

10.
Peripheral concentrations of immunoreactive relaxin are undetectable in primates during the nonfertile menstrual cycle, but become measurable during the interval when chorionic gonadotropin (CG) rises in early pregnancy. The objectives of the current study were to determine if exogenous CG, administered in a dosage regimen which invoked patterns and concentrations resembling those of early pregnancy, would induce relaxin secretion in nonpregnant rhesus monkeys, and whether the induction was dependent on the age of the corpus luteum (CL) at the onset of treatment. Female rhesus monkeys received twice-daily i.m. injections of increasing doses of human CG (hCG) for 10 days beginning in the early (n = 4), mid (n = 6) or late (n = 4) luteal phase of the menstrual cycle [5.3 +/- 0.3, 8.3 +/- 0.5, and 12.0 +/- 0.4 days after the midcycle luteinizing hormone (LH) surge, respectively; means +/- SEM]. Whereas immunoreactive relaxin was nondetectable in the luteal phase of posttreatment cycles, detectable levels of relaxin were observed in 2 of 4, 5 of 6, and 3 of 4 monkeys during hCG treatment in the early, mid and late luteal phase, respectively. Although CG treatment rapidly enhance progesterone levels, the appearance of relaxin was deferred; relaxin was first detectable 9.0 +/- 1.0 and 4.7 +/- 1.9 days after the onset of CG treatment at early and late luteal phases. Patterns of relaxin concentrations differed among groups (P less than 0.05, ANOVA; split plot design) and relaxin levels were lowest (P less than 0.01) in monkeys treated during the early luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Twenty-two nonpregnant and 19 pregnant German Shepherd dogs were assigned to either a control group or a suspected short-cycling group, based on the interestrous interval (> or = 6 month and < 5 month, respectively) and data from previous pregnancies. Blood serum concentrations of progesterone and prolactin were determined from days 5 to 60 (day 0 = ovulation) for characterization of luteal function. In pregnant bitches, placental integrity was additionally assessed by relaxin concentrations. The nonpregnant, suspected short-cycling bitches had significantly lower progesterone concentrations than the controls, indicating decreased luteal activity both in the autonomous and prolactin-dependent period. In the pregnant suspected short-cycling bitches, unavoidable progesterone supplementation prevented assessment of luteal function; it may have suppressed prolactin secretion (significantly lower prolactin concentrations from days 20 to 60, compared with the pregnant control group), but deficient prolactin secretion affecting luteal function cannot be excluded. The significantly lower relaxin concentrations, together with a high incidence of embryonic death found in the pregnant, suspected short-cycling group, may indicate loss of placental integrity and may have caused decreased prolactin concentrations.  相似文献   

12.
The objectives of this study were to identify and characterize dog uterine endometrial proteins synthesized de novo in explant culture during early luteal phase, to examine distribution of these proteins prior to the embryo's entering the uterus and during its free-floating period prior to implantation, and to examine regulation of endometrial proteins by estrogen and progesterone (P4) treatments. Uterine endometrium was collected from cyclic and pregnant bitches on diestrus Days 3, 7, and 10 as determined by loss of cornification of vaginal epithelium, and from ovariectomized dogs after treatment with corn oil, estrogen, P4, or estrogen followed by 1 or 2 wk of P4. Tissue was incubated in an explant culture system in the presence of [3H]leucine or [35S]methionine. The rate of incorporation of [3H]leucine into nondialyzable macromolecules indicated no significant change in rates of incorporation by status (pregnant vs. nonpregnant), day, or steroid treatment. Uterine endometrial-conditioned culture medium, analyzed by two-dimensional SDS-PAGE and fluorography, revealed a complex array of at least ten proteins or protein complexes in cyclic and pregnant bitches. No difference in protein pattern was detected by status; however, differences in distribution were apparent by day of cycle or early pregnancy. Two major proteins, cP5 (M(r) 54,686) and cP6 (M(r) 23,010) appeared to be differentially expressed. Expression of cP5, maximal on diestrus Day 3, decreased as the cycle or pregnancy progressed to diestrus Day 10. In contrast, expression of cP6, a minor protein on diestrus Day 3, appeared to be up-regulated for each status to Day 10, with increased intensity and multiple isoelectric and molecular-weight variants. In ovariectomized steroid-treated dogs, two-dimensional SDS-PAGE showed that pattern and distribution of specific proteins were affected by treatment. Acidic protein cP1 (M(r) 87,600), synthesized after corn oil and P4 treatment, was suppressed with estradiol (E2). Proteins cP2 (M(r) 40,000 and M(r) 42,000), present with all treatments, were intensified with P4. A high-M(r) basic protein complex (cP3) and acidic protein cP4 were expressed with E2 and maintained with P4 treatment. Proteins cP5 and cP6, while not induced by E2 or P4 alone, required E2 priming for P4 induction. Protein cP5 was down-regulated while cP6 was up-regulated with P4 for 2 wk. Proteins induced by estrogen followed by 1 or 2 wk of P4 treatments were similar to those released by endometrial explants collected from pregnant and cyclic bitches on Days 3, 7, and 10 of spontaneous diestrus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
To characterize plasma estradiol, LH and FSH patterns of secretion during the bitch estrous cycle, blood samples were obtained daily from 15 days before until 135 days after the LH surge in 10 pregnant and 10 nonpregnant beagle bitches. After an initial increase between days 15 and 10 and an expected proestrous peak, estradiol concentrations increased again from days 9-12 (corresponding to cytological metestrus) from basal values observed around day 9 after the LH surge, and remained significantly elevated throughout the luteal phase both in pregnant and nonpregnant animals. Concomitantly with the end of the luteal phase, plasma concentrations of estradiol returned to basal values in both groups. During the mid- to late-luteal phase, mean basal LH secretion was significantly elevated throughout in the pregnant relative to the nonpregnant animals. However, in nonpregnant animals, pulsatility was increased and peaks of higher amplitude were observed. The plasma FSH profiles, determined by a specific homologous RIA, differed significantly between pregnant and nonpregnant bitches during the last two-thirds of the luteal phase with a mean FSH level more elevated during pregnancy. The FSH level then decreased around parturition and low concentrations during lactation period were observed. The FSH concentrations remained steady in nonpregnant luteal phases from early luteal phase through mid-anestrus. The differences in pregnant and nonpregnant LH and FSH concentrations suggest pregnancy differences in regulation of the corpus luteum. Finally, the elevated estradiol concentrations observed during the luteal phase of both pregnant and nonpregnant animals suggest that an ovarian production of estrogens may be involved in overall corpus luteum regulation in dogs as in other species.  相似文献   

14.
In nonpregnant and pregnant dogs the corpora lutea (CL) are the only source of progesterone (P4) which shows an almost identical secretion pattern until the rapid decrease of P4 prior to parturition. For the nonpregnant dog clear evidence has been obtained that physiological luteal regression is devoid of a functional role of the PGF2α-system and seems to depend on the provision of StAR. Yet in pregnant dogs the rapid prepartal luteal regression, coinciding with an increase of PGF2α, may be indicative for different regulatory mechanisms. To assess this situation and by applying semi-quantitative Real Time (Taq Man) RT-PCR, expression patterns were determined for the following factors in CL of pregnant and prepartal dogs and of mid-pregnant dogs treated with the antiprogestin Aglepristone: cyclooxygenase 2 (Cox2), prostaglandin E2 synthase (PGES), prostaglandin F2α synthase (PGFS), its receptors (EP2, EP4 an FP), the steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid-dehydrogenase (3βHSD) and the progesterone receptor (PR). Peripheral plasma P4 concentrations were determined by RIA. CL were collected via ovariohysterectomy from pregnant bitches (n = 3–5) on days 8–12 (Group 1, pre-implantation period), days 18–25 (Group 2, post-implantation period), days 35–40 (Group 3, mid-gestation period) and during the prepartal progesterone decline (Group 4). Additionally, CL were obtained from groups of 5 mid-pregnant dogs (days 40–45) 24 h, respectively 72 h after the second treatment with Aglepristone. Expression of Cox2 and PGES was highest during the pre-implantation period, that of PGFS and FP during the post-implantation period. EP4 and EP2 revealed a constant expression pattern throughout pregnancy with a prepartal upregulation of EP2. 3βHSD and StAR decreased significantly from the pre-implatation period to prepartal luteolysis, it was matched by the course of P4 concentrations. Expression of the PR was higher during mid-gestation and prepartal luteolysis than in the two preceding periods. After application of Aglepristone the overall mRNA-expression resembled the situation during prepartal luteolysis except for EP2, which remained unchanged.These data suggest that – as in the nonpregnant bitch – also in the pregnant bitch luteal production of prostaglandins is associated with luteal support rather than luteolysis. On the other hand induction of luteolysis by the PR blocker Aglepristone points to a role of luteal P4 as an autocrine factor in a positive loop feedback system controlling the availability of P4, StAR and 3βHSD.  相似文献   

15.
Chu PY  Lee CS  Wright PJ 《Theriogenology》2006,66(6-7):1545-1549
The relationships between changes in plasma progesterone concentrations, degeneration of the luminal epithelium, the occurrence of apoptosis of endometrial cells and endometrial leucocyte populations in the bitch were determined. Mature bitches (n = 15) were euthanized and necropsied when in diestrus (Days 7-75, n = 12) or in anestrus (Days 10, 32 and 53). Degeneration of the luminal epithelium was observed in bitches in late diestrus (Days 38-75, n = 5) when plasma progesterone concentrations were decreasing and in anestrus (Days 10 and 32, n = 2) when plasma progesterone concentrations were < 0.5 ng/mL. Endometrial leucocyte populations increased after degeneration of the luminal epithelium (around Day 42 of diestrus). Apoptosis was mainly observed in the basal glandular epithelial cells and endothelial cells of blood capillaries in all except anestrous bitches. Very few apoptotic cells were found in the superficial glandular epithelial cells and stromal cells. Higher apoptotic indices were detected in the basal glandular epithelium on Days 12-42 of diestrus than at other stages. Therefore, apoptosis of glandular basal epithelial cells occurred mainly in early diestrus, degeneration of cells of the luminal epithelium occurred from mid-diestrus to early anestrus, and the increase in leucocyte numbers may have been a consequence and not a cause of luminal epithelial degeneration.  相似文献   

16.
The cell composition of human and bovine corpora lutea (CL) from various reproductive states was investigated by computerized video-based interactive Bioquant image analysis system IV and by light microscope immunocytochemistry. Human and bovine CL contained more nonluteal cells than luteal cells. Human CL contained a lower number of luteal and a greater number of nonluteal cells than bovine CL. Regardless of the reproductive state, human CL contained more small luteal cells than large luteal cells. In all reproductive states except in the late luteal phase, the bovine CL also contained more small luteal cells than large luteal cells. The average sizes of all the cells in human CL were smaller than in bovine CL. Human CL contained more vascular space than bovine CL during mid and late luteal phases. The number of luteal cells increased and nonluteal cells decreased from early to mid luteal phase, and then luteal cells decreased and nonluteal cells increased in late luteal phase and in degenerating human and bovine CL. While the change of number of small and large luteal cells first occurred from early to mid luteal phase in human CL, it did not take place until the late luteal phase in bovine CL. The average size of large luteal cells in humans and of small luteal cells in cattle did not change, whereas size of the other cells changed in different reproductive states in both human and bovine CL. The cell composition of term pregnancy human CL was similar to mid or late luteal phase, whereas the cell composition of early pregnancy bovine CL was similar to mid luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Induction of estrus with deslorelin implants was followed by abortions in bitches that conceived during the induced estrus. Lowering the deslorelin dose and choosing a better implantation site prevented the abortions. This study investigated the hypothesis that induction of estrus with deslorelin is followed by reduced serum progesterone concentrations (SPC) during the ensuing diestrus. Assuming that reduced luteal function resulted from reduced LH secretion due to hypophyseal down-regulation of GnRH receptors, the effect of human chorionic gonadotropin (hCG) treatment on the SPC of diestrous bitches was also investigated. In Experiment 1, 10 spontaneously cycling bitches served as controls, whereas estrus was induced with deslorelin implants in 24 others. In Experiment 2, six diestrous bitches were treated with a single dose of hCG between Days 39 and 45 of diestrus. The SPC was lower in deslorelin-induced bitches from Days 35 to 56 of diestrus and hCG increased SPC during the first 24 h after treatment, followed by a dramatic decline thereafter. Although SPC recovered in pregnant bitches, it remained much lower (< or = 1 ng/mL) than in untreated, non-pregnant bitches. The suppression of progesterone secretion after hCG treatment suggested that decreased luteal activity in deslorelin-induced bitches may not be a simple consequence of down-regulation of hypophyseal GnRH receptors.  相似文献   

18.
In the pregnant mare, luteal estrogen production increases at the onset of equine chorionic gonadotropin (eCG) secretion by endometrial cups. In previous studies, we have demonstrated that eCG stimulates luteal androgen and estrogen production in pregnant mares. To further elucidate the regulation of steroidogenesis within the equine corpus luteum (CL) of pregnancy, we examined the expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD), cytochrome P450 17alpha-hydroxylase/17,20 lyase (P450(17alpha)) and cytochrome P450 aromatase (P450(arom)) in luteal tissue samples collected during diestrus (Days 7 to 10) and pregnancy before (Days 29 to 35) and after (Days 42 to 45) the onset of eCG secretion. Immunoblot analyses revealed a single protein per enzyme with molecular weights of 48 kDa (3beta-HSD), 58 kDa (P450(17alpha)) and 56 kDa (P450(arom)). Steady-state levels of 3beta-HSD were lower in luteal tissue of diestrus than pregnancy, but expression did not change during pregnancy. Steady-state expression of P450(17alpha) in CL of diestrus was not significantly different from that of pregnancy. During pregnancy, P450(17alpha) expression was significantly higher after the onset of eCG secretion. Steady-state expression of P450(arom) in CL of diestrus was not significantly different from that of pregnancy. During pregnancy, luteal expression of P450(arom) was significantly lower after the onset of eCG secretion. These data support the hypotheses that eCG has a differential effect on the expression of luteal steroidogenic enzymes, that the eCG-induced increase in luteal estrogen production is the result of an increase in available aromatizable androgen due to an increase in P450(17alpha) expression and activity, and that increased luteal estrogen production is not due to an increase in aromatase expression.  相似文献   

19.
The expression of gonadotropin-releasing hormone (GNRH) receptor (GNRHR) and the direct role of GNRH1 on corpora lutea function were studied in Mediterranean buffalo during diestrus. Immunohistochemistry evidenced at early, mid, and late luteal stages the presence of GNRHR only in large luteal cells and GNRH1 in both small and large luteal cells. Real-time PCR revealed GNRHR and GNRH1 mRNA at the three luteal stages, with lowest values in late corpora lutea. In vitro corpora lutea progesterone production was greater in mid stages and lesser in late luteal phases, whereas prostaglandin F2 alpha (PGF2alpha) increased from early to late stages, and PGE2 was greater in the earlier-luteal phase. Cyclooxygenase 1 (prostaglandin-endoperoxide synthase 1; PTGS1) activity did not change during diestrus, whereas PTGS2 increased from early to late stages, and PGE2-9-ketoreductase (PGE2-9-K) was greater in late corpora lutea. PTGS1 activity was greater than PTGS2 in early corpora lutea and lesser in late luteal phase. In corpora lutea cultured in vitro, the GNRH1 analog (buserelin) reduced progesterone secretion and increased PGF2alpha secretion as well as PTGS2 and PGE2-9-K activities at mid and late stages. PGE2 release and PTGS1 activity were increased by buserelin only in late corpora lutea. These results suggest that GNRH is expressed in all luteal cells of buffalo, whereas GNRHR is only expressed in large luteal phase. Additionally, GNRH directly down-regulates corpora lutea progesterone release, with the concomitant increases of PGF2alpha production and PTGS2 and PGE2-9-K enzymatic activities.  相似文献   

20.
Anti-oxidative enzymes play a role in protecting cells from oxidative stress-induced cell death. The present study was conducted to evaluate whether the anti-oxidant and pro-oxidant enzymatic capacities of the sheep corpus luteum (CL) are correlated with steroidogenic and structural status of the gland during the estrous cycle. Steroidogenic activity, apoptosis and superoxide dismutase (SOD1 and SOD2), nitric oxide synthase (NOS), glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferase (GST) activities were determined in the CL at specific developmental stages of the luteal phase. The intensity of apoptotic DNA fragmentation, characteristic of physiological cell death, was much greater in CL at late luteal phase than at early and mid-luteal phase, concomitantly with the diminution in the plasma progesterone concentrations from mid-to late luteal phase. SOD1 and GPX activities increased from early to mid-luteal phase, and increased further at late luteal phase. SOD2 and GST activities were not different between early and mid-luteal phase, but increased at late luteal phase. GSR activity was not different between any luteal phase examined. NOS activity decreased from early to mid- and late luteal phase. These results show that the activities of SOD1, SOD2, NOS, GPX, GSR and GST in the sheep CL are subject to major changes during the estrous cycle, and that the anti-oxidant and pro-oxidant enzymatic capacities of luteal cells are not correlated with cell steroidogenic status and integrity during the late luteal phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号