首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Nishino  T Nishino 《Biochemistry》1987,26(11):3068-3072
Xanthine-NAD and NADH-methylene blue oxidoreductase activities of chicken liver xanthine dehydrogenase were inactivated by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (5'-FSBA), an active site directed reagent for nucleotide binding sites. The inactivation reaction displayed pseudo-first-order kinetics. A double-reciprocal plot of inactivation velocity vs. 5'-FSBA concentration showed that 5'-FSBA and enzyme formed a complex prior to inactivation. NAD protected the enzyme from inactivation by 5'-FSBA in a competitive fashion. The modified enzyme had the same xanthine-dichlorophenolindophenol and xanthine-O2 oxidoreductase activities as the native enzyme, and on addition of xanthine to the modified enzyme, bleaching of the spectrum occurred in the visible region. The amount of radioactivity incorporated into the enzyme by incubation with [14C]-5'-FSBA was parallel to the loss of xanthine-NAD oxidoreductase activity, and the stoichiometry was 1 mol/mol of enzyme-bound FAD for complete inactivation. These results indicated that 5'-FSBA modified specifically the binding site for NAD of chicken liver xanthine dehydrogenase. The incorporated radioactivity was released slowly from 14C-labeled enzyme by incubation with dithiothreitol with concomitant restoration of catalytic activity. The modified residue responsible for inactivation was identified as a tyrosine.  相似文献   

2.
We have detected xanthine oxidoreductase activity in unfixed cryostat sections of rat and chicken liver, rat duodenum, and bovine mammary gland using the tissue protectant polyvinyl alcohol, the electron carrier 1-methoxyphenazine methosulfate, the final electron acceptor Tetranitro BT, and hypoxanthine as a substrate. Enzyme activity was localized in rat duodenum at lateral membranes and brush borders of enterocytes and in goblet cells and mucus. Hepatocytes in pericentral areas and especially sinusoidal cells showed high activity in rat liver. Xanthine oxidoreductase was also detected in epithelial cells and milk lipid globules of lactating bovine mammary gland, which is known to contain large quantities of the oxidase form of the enzyme. Chicken liver, which contains an inconvertible dehydrogenase form, also showed high activity in sinusoidal cells. Therefore, we conclude that the tetrazolium reaction demonstrates both the dehydrogenase and the oxidase form of xanthine oxidoreductase. Control activity, in the absence of hypoxanthine or in the presence of the competitive inhibitor allopurinol, was low in all tissues studied. Addition of O2 or NAD to the incubation medium did not change the specific reaction in bovine mammary gland or chicken liver, implying that the dehydrogenase and the oxidase form are not dependent on their natural electron acceptors in this tetrazolium salt reaction. We conclude that the present light microscopic method gives specific and precise localization of xanthine oxidoreductase activity in situ.  相似文献   

3.
Considerable evidence suggests that the release of iron from ferritin is a reductive process. A role in this process has been proposed for two hepatic enzymes, namely xanthine oxidoreductase and an NADH oxidoreductase. The abilities of xanthine and NADH to serve as a source of reducing power for the enzyme-mediated release of ferritin iron (ferrireductase activity) were compared with turkey liver and rat liver homogenates. The maximal velocity (Vmax.) for the reaction with NADH was 50 times greater than with xanthine; however, the substrate concentration required to achieve half-maximal velocity (Km) was 1000 times less with xanthine than with NADH. NADPH could be substituted for NADH with little loss in activity. Dicoumarol did not inhibit the reaction with NADH or NADPH, demonstrating that the ferrireductase activity with those substrates was not the result of the liver enzyme 'DT-diaphorase' [NAD(P)H dehydrogenase (quinone)]. A flavin nucleotide was required for ferrireductase activity with rat and turkey liver cytosol when xanthine, NADH or NADPH was used as the reducing substrate. FMN yielded twice the activity with NADH or NADPH, whereas FAD was twice as effective with xanthine as substrate. Kinetic comparisons, differences in lability and partial chromatographic resolution of the ferrireductase activities with the two types of reducing substrates strongly indicate that the ferrireductase activities with xanthine and NADH are catalysed by separate enzyme systems contained in liver cytosol. Complete inhibition by allopurinol of the ferrireductase activity endogenous to undialysed liver cytosol preparations and the ability of xanthine to restore equivalent activity to dialysed preparations indicate that the source of reducing power for the endogenous activity is xanthine. These studies suggest that xanthine, NADH or NADPH can serve as a source of reducing power for the enzyme-mediated reduction of ferritin iron, with a flavin nucleotide serving as the shuttle of electrons from the enzymes to the ferritin iron.  相似文献   

4.
The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway.  相似文献   

5.
Bovine milk xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2) has been purified by a modified method without the use of proteases, and its structure has been analyzed by polyacrylamide gel electrophoresis. Native xanthine oxidase is found to consist of only two polypeptide chains A with molecular weights of 150 000 each. These chains have NH2-terminal methionine. Limited proteolysis with trypsin, chymotrypsin, or subtilisin at pH 8 did not affect molecular weight and activities of the enzyme while each of the A chains was cleaved under these conditions to three fragments C, E, and F with molecular weights of 92 00, 42 000 and 20 000, respectively. These fragments remained bound to each other and were relatively resistant to subsequent proteolysis. The isolation of xanthine oxidase in the presence of pancreatin as described by Hart et al. (1970, Biochem. J. 116, 851) gives partially digested enzyme composed mainly of chains C, E (Mr 35 000) and a small component (Mr approx. 15 0-0). The action of subtilisin on xanthine oxidase at pH 11 resulted in complete digestion of E chains, FAD separation, and total loss of xanthine:oxygen oxidoreductase activity while xanthine:indophenol oxidoreductase activity was relatively little affected. The residual enzyme has a molecular weight of about 200 000, is composed mainly of two C chains (and may probably contain F and/or proteolytic fragments of low molecular weight), contains molybdenum, and does not contain FAD.  相似文献   

6.
Affinity labeling of the NAD-binding site of chicken liver xanthine dehydrogenase by 5'-p-fluorosulfonylbenzoyladenosine (5'-FSBA) caused spectral perturbation around 450 nm in the same way as NAD. Reductive titration with xanthine of native xanthine dehydrogenase in the presence of NAD showed that redox potentials of the FAD/FADH. and FADH./FADH2 couples were shifted positive by NAD binding to the enzyme. The redox potentials of these couples were also shifted to some extent by modification of the NAD-binding site with 5'-FSBA. These results provide further evidence that binding of NAD to chicken liver xanthine dehydrogenase modulates the reactivity of the enzyme by shifting the redox potential of FAD. Proteolytic cleavage of the [14C]-5'-FSBA-modified enzyme yielded several domain peptides, only one of which contained radioactivity. The isolated radioactive peptide was further digested with Staphylococcus aureus protease and the 14C-labeled peptide was purified by two steps of high performance liquid chromatography. The amino acid sequence of the peptide was determined, and a reactive tyrosine residue was identified.  相似文献   

7.
Turkey liver xanthine dehydrogenase containing the full complement of molybdenum, flavin and iron–sulphur prosthetic groups is, as normally isolated, a mixture of functional and non-functional enzyme. The latter apparently lacks the cyanolysable persulphide groups essential to the oxidation of xanthine and to interaction with arsenite. These groups are not required for the oxidation of NADH by Methylene Blue. That KI treatment effects a differential release of flavin from xanthine-prereduced and NADH-prereduced enzyme merely reflects the degree of functionality of the preparations used and may not be taken as evidence for non-equivalence of the flavin chromophores.  相似文献   

8.
The localization of xanthine oxidoreductase activity was investigated in unfixed cryostat sections of various rat tissues by an enzyme histochemical method which specifically demonstrates both the dehydrogenase and oxidase forms of xanthine oxidoreductase. High activity was found in epithelial cells from skin, vagina, uterus, penis, liver, oral and nasal cavities, tongue, esophagus, fore-stomach and small intestine. In addition activity was demonstrated in sinusoidal cells of liver and adrenal cortex, endothelial cells in various organs and connective tissue fibroblasts. Xanthine oxidoreductase produces urate which is a scavenger of oxygen-derived radicals. Because the enzyme is found in epithelial and endothelial cells which are subject to relatively high oxidant stress, it is postulated that in these cells xanthine oxidoreductase is involved in the antioxidant enzyme defense system. In addition, a possible role for the enzyme in proliferation and differentiation processes is discussed.  相似文献   

9.
Xanthine dehydrogenase (EC 1.2.1.37) was isolated from chicken livers and immobilized by adsorption to a Sepharose derivative, prepared by reaction of n-octylamine with CNBr-activated Sepharose 4B. Using a crude preparation of enzyme for immobilization it was observed that relatively more activity was adsorbed than protein, but the yield of immobilized activity increased as a purer enzyme preparation was used. As more activity and protein were bound, relatively less immobilized activity was recovered. This effect was probably due to blocking of active xanthine dehydrogenase by protein impurities. The kinetics of free and immobilized xanthine dehydrogenase were studied in the pH range 7.5-9.1. The Km and V values estimated for free xanthine dehydrogenase increase as the pH increase; the K'm and V values for the immobilized enzyme go through a minimum at pH 8.1. By varying the amount of enzyme activity bound per unit volume of gel, it was shown that K'm is larger than Km are result of substrate diffusion limitation in the pores of the support material. Both free and immobilized xanthine dehydrogenase showed substrate activation at low concentrations (up to 2 microM xanthine). Immobilized xanthine dehydrogenase was more stable than the free enzyme during storage in the temperature range of 4-50 degrees C. The operational stability of immobilized xanthine dehydrogenase at 30 degrees C was two orders of magnitude smaller than the storage stability, t 1/2 was 9 and 800 hr, respectively. The operational stability was, however, better than than of immobilized milk xanthine oxidase (t 1/2 = 1 hr). In addition, the amount of product formed per unit initial activity in one half-life, was higher for immobilized xanthine dehydrogenase than for immobilized xanthine oxidase. Unless immobilized milk xanthine oxidase can be considerable stabilized, immobilized chicken liver xanthine dehydrogenase is more promising for application in organic synthesis.  相似文献   

10.
A method to purify bovine liver xanthine oxidase in described, with which samples of 256-fold specific activity with respect to the initial homogenate are obtained. Bovine liver xanthine oxidase and chicken liver xanthine dehydrogenase with oxygen as electron acceptor exhibit similar profile in pKM and log V versus pH plots. With NAD+ as electron acceptor a different profile in the pKM xanthine plot is obtained for chicken liver xanthine dehydrogenase. However three inflection points at the same pH values appear in all plots. Both enzymes are irreversibly inhibited by pCMB and reversibly by N-ethylmaleimide and by iodoacetamide, with competitive and uncompetitive type inhibitions respectively. These results suggest that NAD+ alters the enzymatic action since its binding to the enzyme antecedes the binding of xanthine to the xanthine oxidase molecule, without undergoing itself any modification. 0.15 M DDT of DTE treatment of bovine liver xanthine oxidase gives to the enzyme a permanent activity with NAD+ without modifying its activity with oxygen. The enzyme thus treated produces parallel straight lines in Lineweaver-Burk plots.  相似文献   

11.
Native FAD was removed from chicken liver xanthine dehydrogenase (XDH) and replaced with a number of artificial flavins of different redox potential. Dithionite titration of the 2-thio-FAD- or 4-thio-FAD (high potential)-containing enzymes showed that the first center to be reduced was the flavin. With native enzyme, iron-sulfur centers are the first to be reduced. With the low potential flavin, 6-OH-FAD, the enzyme-bound flavin was the last center to be reduced in reductive titration with xanthine. These shifts in the reduction profile support the hypothesis that the distribution of reducing equivalents in multi-center oxidation-reduction enzymes of this type is determined by the relative potentials of the centers. The reaction of molecular oxygen with fully reduced 2-thio-FAD XDH or 4-thio-FAD XDH resulted in 5 electron eq being released in a fast phase and one in a slow phase. Reduction of these enzymes by xanthine was limited at a rate comparable to that for the release of urate from native XDH. Xanthine/O2 turnover with these enzymes (and native XDH) resulted in approximately 40-50% of the xanthine reducing equivalents appearing as superoxide. Steady state turnover experiments involving all modified flavin-containing enzymes, as well as native enzyme, showed that shifting the flavin potential either positive or negative relative to FAD caused a decrease in catalytic activity in the xanthine/NAD reductase reaction. In the case of the xanthine/O2 reductase activity, there is no simple obvious relationship between the activity and the redox potential of the reconstituted flavin.  相似文献   

12.
Reductive titrations of a NAD-dependent type (type-D) and an O2-dependent type (type-O) of rat liver xanthine dehydrogenase showed that only the type-D enzyme formed a pronounced stable FAD semiquinone (FADH*). The FAD semiquinone was less stabilized in the presence of NAD. The Vmax value for xanthine-NAD activity of type-D enzyme was close to that for xanthine-O2 activity of type-O enzyme, while the Vmax value for xanthine-O2 activity of type-D enzyme was about one-fourth of that of type-O enzyme. The Km value for O2 of type-D enzyme was about five times as large as that of type-O enzyme. The absorbance spectrum of type-D enzyme during turnover with xanthine and O2 as substrates showed a considerable amount of FADH* formation, but that with xanthine and NAD as substrates showed only a negligible one. Low xanthine-O2 activity of type-D enzyme, as compared with that of type-O enzyme, seems to be explained by the conformational change occurring in conversion from type-O to type-D enzyme, which results in different reactivity of FAD to molecular oxygen and a higher fraction of FADH* during turnover. The binding of NAD may possibly increase the fraction of FADH2, resulting in a Vmax value of xanthine-NAD activity almost as high as that of xanthine-O2 activity of type-O enzyme.  相似文献   

13.
Crude and purified xanthine dehydrogenase preparations from rat liver were examined for the existence of a naturally occurring inactive form. Reduction of the purified enzyme by xanthine under anaerobic conditions proceeded in two phases. The enzyme was inactivated by cyanide, which caused the release of a sulfur atom from the molybdenum center as thiocyanate. The amount of thiocyanate released was almost in parallel with the initial specific activity. The active and inactive enzymes could be resolved by affinity chromatography on Sepharose 4B/folate gel. These results provided evidence that the purified enzyme preparation from rat liver contained an inactive form. A method for the determination of the active and inactive enzymes in crude enzyme preparations from rat liver was devised based on the fact that only active enzyme could react with [14C]allopurinol and both active and inactive enzymes could be immunoprecipitated quantitatively by excess specific antibody to xanthine dehydrogenase. The amount of [14C]alloxanthine (derived from [14C]allopurinol) bound to the active sulfo enzyme in crude rat liver extracts was about 0.5 mol/mol of FAD. As this content is closely similar to that in the purified enzyme, these results suggest the existence of an inactive desulfo form in vivo.  相似文献   

14.
Studies have been made on the possible involvement of malondialdehyde (MDA) and (E)-4-hydroxynon-2-enal (HNE), two terminal compounds of lipid peroxidation, in modifying xanthine oxidoreductase activity through interaction with the oxidase (XO) and/or dehydrogenase (XDH) forms. The effect of the two aldehydes on XO (reversible, XO(rev), and irreversible, XO(irr)) and XDH was studied using xanthine oxidase from milk and xanthine oxidoreductase partially purified from rat liver. The incubation of milk xanthine oxidase with these aldehydes resulted in the inactivation of the enzyme following pseudo-first-order kinetics: enzyme activity was completely abolished by MDA (0.5-4 mM), while residual activity (5% of the starting value) associated with an XO(irr) form was always observed when the enzyme was incubated in the presence of HNE (0.5-4 mM). The addition of glutathione to the incubation mixtures prevented enzyme inactivation by HNE. The study on the xanthine oxidoreductase partially purified from rat liver showed that MDA decreases the total enzyme activity, acting only with the XO forms. On the contrary HNE leaves the same level of total activity but causes the conversion of XDH into an XO(irr) form.  相似文献   

15.
We report the cloning of the AOH1 and AOH2 genes, which encode two novel mammalian molybdo-flavoproteins. We have purified the AOH1 protein to homogeneity in its catalytically active form from mouse liver. Twenty tryptic peptides, identified or directly sequenced by mass spectrometry, confirm the primary structure of the polypeptide deduced from the AOH1 gene. The enzyme contains one molecule of FAD, one atom of molybdenum, and four atoms of iron per subunit and shows spectroscopic features similar to those of the prototypic molybdo-flavoprotein xanthine oxidoreductase. The AOH1 and AOH2 genes are 98 and 60 kilobases long, respectively, and consist of 35 coding exons. The AOH1 gene has the potential to transcribe an extra leader non-coding exon, which is located downstream of exon 26, and is transcribed in the opposite orientation relative to all the other exons. AOH1 and AOH2 map to chromosome 1 in close proximity to each other and to the aldehyde oxidase gene, forming a molybdo-flavoenzyme gene cluster. Conservation in the position of exon/intron junctions among the mouse AOH1, AOH2, aldehyde oxidase, and xanthine oxidoreductase loci indicates that these genes are derived from the duplication of an ancestral precursor.  相似文献   

16.
Localization of the activity of both the dehydrogenase and oxidase forms of xanthine oxidoreductase were studied in biopsy and postmortem specimens of various human tissues with a recently developed histochemical method using unfixed cryostat sections, poly-(vinyl alcohol) as tissue stabilizator, 1-methoxyphenazine methosulphate as intermediate electron acceptor and Tetranitro BT as final electron acceptor. High enzyme activity was found only in the liver and jejunum, whereas all the other organs studied showed no activity. In the liver, enzyme activity was found in sinusoidal cells and both in periportal and pericentral hepatocytes. In the jejunum, enterocytes and goblet cells, as well as the lamina propria beneath the basement membrane showed activity. The oxidase activity and total dehydrogenase and oxidase activity of xanthine oxidoreductase, as determined biochemically, were found in the liver and jejunum, but not in the kidney and spleen. This confirmed the histochemical results for these organs. Autolytic rat livers several hours after death were studied to exclude artefacts due to postmortem changes in the human material. These showed loss of activity both histochemically and biochemically. However, the percentage activity of xanthine oxidase did not change significantly in these livers compared with controls. The findings are discussed with respect to the possible function of the enzyme. Furthermore, the low conversion rate of xanthine dehydrogenase into xanthine oxidase during autolysis is discussed in relation to ischemia-reperfusion injury.  相似文献   

17.
The native flavin, FAD, was removed from chicken liver xanthine dehydrogenase and milk xanthine oxidase by incubation with CaCl2. The deflavoenzymes, still retaining their molybdopterin and iron-sulfur prosthetic groups, were reconstituted with a series of FAD derivatives containing chemically reactive or environmentally sensitive substituents in the isoalloxazine ring system. The reconstituted enzymes containing these artificial flavins were all catalytically active. With both the chicken liver dehydrogenase and the milk oxidase, the flavin 8-position was found to be freely accessible to solvent. The flavin 6-position was also freely accessible to solvent in milk xanthine oxidase, but was significantly less exposed to solvent in the chicken liver dehydrogenase. Pronounced differences in protein structure surrounding the bound flavin were indicated by the spectral properties of the two enzymes reconstituted with flavins containing ionizable -OH or -SH substituents at the flavin 6- or 8-positions. Milk xanthine oxidase either displayed no preference for binding of the neutral or anionic flavin (8-OH-FAD) or a slight preference for the anionic form of the flavin (6-hydroxy-FAD, 6-mercapto-FAD, and possibly 8-mercapto-FAD). On the other hand, the chicken liver dehydrogenase had a dramatic preference for binding the neutral (protonated) forms of all four flavins, perturbing the pK of the ionizable substituent greater than or equal to 4 pH units. These results imply the existence of a strong negative charge in the flavin binding site of the dehydrogenase, which is absent in the oxidase.  相似文献   

18.
To determine whether interferon-gamma affects rat purine catabolic and salvage enzyme activities, rats were injected with interferon-gamma (600000 U/kg, i.p.) and, similarly to a vehicle-injected control group, killed before or after injection at 6, 12, and 24 h. Organ homogenates were prepared and enzymatic reactions with substrates were carried out, after which the products were measured either chromatographically or spectrophotometrically. Western and Northern blotting also were performed. In contrast to the vehicle-injected rats, interferon-gamma-injected rats showed a significant rise in xanthine oxidoreductase activity in the liver, while enzyme activity was unchanged in the spleen, kidney, and lung. Western analysis of hepatic xanthine oxidoreductase showed an increased concentration of this protein 12 and 24 h after interferon-gamma injection. Northern analysis disclosed an enhanced mRNA expression coding for this enzyme, peaking 12 h after injection. Contrastingly, the activities of adenosine deaminase, purine nucleoside phosphorylase, hypoxanthine guanine phosphoribosyltransferase, and adenine phosphoribosyltransferase were not affected by interferon-gamma in any organ tested. While interferon-gamma causes an increased hepatic biosynthesis of xanthine oxidoreductase, the physiologic role of this enzyme induction remains undetermined.  相似文献   

19.
The O2-utilizing (type O, oxidase) form of xanthine oxidoreductase is primarily responsible for its ferroxidase activity. This form of xanthine oxidoreductase has 1000 times the ferroxidase activity of the serum ferroxidase caeruloplasmin. It has the ability to catalyse the oxidative incorporation of iron into transferrin at very low Fe2+ and O2 concentrations. Furthermore, the pH optimum of the ferroxidase activity of the enzyme is compatible with the conditions of pH that normally exist in the intestinal mucosa, where it has been proposed that xanthine oxidoreductase may facilitate the absorption of ionic iron. Modification of the molybdenum (Mb) centres of the enzyme in vitro by treatment with cyanide, methanol or allopurinol completely abolishes its ferroxidase activity. The feeding of dietary tungsten to rats, which prevents the incorporation of molybdenum into newly synthesized intestinal xanthine oxidoreductase, results in the progressive loss of the ferroxidase activity of intestinal-mucosa homogenates. Removal of the flavin centres from the enzyme also results in the complete loss of ferroxidase activity; however, the ferroxidase activity of the flavin-free form of the enzyme can be restored with artificial electron acceptors that interact with the molybdenum or non-haem iron centres. The presence of superoxide dismutase or catalase in the assay system results in little inhibition of the ferroxidase activity of xanthine oxidoreductase.  相似文献   

20.
1. Xanthine oxidoreductase was isolated from toad Bufo viridis (a mainly ureotelic amphibian species) and partially purified. The enzyme occurred as a stable xanthine: NAD+ oxidoreductase (EC 1.1.1.204), unconvertible to the oxidase form. 2. Some properties of the enzyme resembled those of xanthine oxidoreductase from an ammonotelic fish, Cyprinus carpio, and the ureotelic rat, but in other aspects it was similar to this enzyme from an uricotelic snake, Natrix natrix. 3. Inhibition of the toad enzyme by NADH at high non-physiological concentrations rules out a modulation of its oxypurine-hydroxylating activity by in vivo changes in the NADH/NAD+ ratio. Therefore, toad xanthine oxidoreductase plays no regulatory role in the purine nucleotide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号