首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear envelope (NE) is a fundamental structure of eukaryotic cells with a dual role: it separates two distinct compartments, and enables communication between them via nuclear pore complexes (NPCs). Little is known about NPCs and NE structural organization in plants. We investigated the structure of NPCs from both sides of the NE in tobacco BY-2 cells. We detected structural differences between the NPCs of dividing and quiescent nuclei. Importantly, we also traced the organizational pattern of the NPCs, and observed non-random NPC distribution over the nuclear surface. Lastly, we observed an organized filamentous protein structure that underlies the inner nuclear membrane, and interconnects NPCs. The results are discussed within the context of the current understanding of NE structure and function in higher eukaryotes.  相似文献   

2.
Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ~1.0 μm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.  相似文献   

3.
We investigate the interaction of hepatitis B virus capsids lacking a nuclear localization signal with nuclear pore complexes (NPCs) in permeabilized HeLa cells. Confocal and wide-field optical images of the nuclear envelope show well-spaced individual NPCs. Specific interactions of capsids with single NPCs are characterized by extended residence times of capsids in the focal volume which are characterized by fluorescence correlation spectroscopy. In addition, single-capsid-tracking experiments using fast wide-field fluorescence microscopy at 50 frames/s allow us to directly observe specific binding via a dual-color colocalization of capsids and NPCs. We find that binding occurs with high probability on the nuclear-pore ring moiety, at 44 ± 9 nm radial distance from the central axis.  相似文献   

4.
Hyperglycemia causes direct apoptosis of neural progenitor cells (NPCs) in diabetic-induced neural tube defects in embryos. However, the underlying mechanisms are poorly understood. The present study is aimed to investigate the specific cellular proteins that may be involved in NPCs apoptosis as well as mechanisms by which the proteins regulate the oxidative stress-induced NPCs apoptosis. Our present results have shown that the expression of c-Abl was up-regulated in NPCs exposed to high glucose in vitro . The increased c-Abl was localized mainly in the nucleus. High glucose also induced an increase in nuclear p53 protein levels and the p53-c-Abl complex in NPCs. Administration of reactive oxygen species scavengers decreased the protein level of c-Abl, p53 and NPCs apoptosis. Inhibition of c-Abl reduced NPCs apoptosis and the nuclear protein level of p53 in response to high glucose. These results demonstrate that c-Abl is involved in the reactive oxygen species-activated apoptotic pathways in NPCs apoptosis. Inhibition of c-Abl may protect NPCs against insults induced by high glucose via the modulation of NPCs apoptotic machinery.  相似文献   

5.
Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.  相似文献   

6.
In eukaryotic cells, all macromolecules that traffic between the nucleus and the cytoplasm cross the double nuclear membrane through nuclear pore complexes (NPCs). NPCs are elaborate gateways that allow efficient, yet selective, translocation of many different macromolecules. Their protein composition has been elucidated, but how exactly these nucleoporins come together to form the pore is largely unknown. Recent data suggest that NPCs are composed of an extremely stable scaffold on which more dynamic, exchangeable parts are assembled. These could be targets for molecular rearrangements that change nuclear pore transport properties and, ultimately, the state of the cell.  相似文献   

7.
Nuclear‐pore complexes (NPCs) are large protein channels that span the nuclear envelope (NE), which is a double membrane that encloses the nuclear genome of eukaryotes. Each of the typically 2,000–4,000 pores in the NE of vertebrate cells is composed of multiple copies of 30 different proteins known as nucleoporins. The evolutionarily conserved NPC proteins have the well‐characterized function of mediating the transport of molecules between the nucleoplasm and the cytoplasm. Mutations in nucleoporins are often linked to specific developmental defects and disease, and the resulting phenotypes are usually interpreted as the consequences of perturbed nuclear transport activity. However, recent evidence suggests that NPCs have additional functions in chromatin organization and gene regulation, some of which might be independent of nuclear transport. Here, we review the transport‐dependent and transport‐independent roles of NPCs in the regulation of nuclear function and gene expression.  相似文献   

8.
Functional association of Sun1 with nuclear pore complexes   总被引:5,自引:2,他引:3       下载免费PDF全文
Sun1 and 2 are A-type lamin-binding proteins that, in association with nesprins, form a link between the inner nuclear membranes (INMs) and outer nuclear membranes of mammalian nuclear envelopes. Both immunofluorescence and immunoelectron microscopy reveal that Sun1 but not Sun2 is intimately associated with nuclear pore complexes (NPCs). Topological analyses indicate that Sun1 is a type II integral protein of the INM. Localization of Sun1 to the INM is defined by at least two discrete regions within its nucleoplasmic domain. However, association with NPCs is dependent on the synergy of both nucleoplasmic and lumenal domains. Cells that are either depleted of Sun1 by RNA interference or that overexpress dominant-negative Sun1 fragments exhibit clustering of NPCs. The implication is that Sun1 represents an important determinant of NPC distribution across the nuclear surface.  相似文献   

9.
Antonin W  Ellenberg J  Dultz E 《FEBS letters》2008,582(14):2004-2016
In eukaryotes, all macromolecules traffic between the nucleus and the cytoplasm through nuclear pore complexes (NPCs), which are among the largest supramolecular assemblies in cells. Although their composition in yeast and metazoa is well characterized, understanding how NPCs are assembled and form the pore through the double membrane of the nuclear envelope and how both processes are controlled still remains a challenge. Here, we summarize what is known about the biogenesis of NPCs throughout the cell cycle with special focus on the membrane reorganization and the regulation that go along with NPC assembly.  相似文献   

10.
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs.  相似文献   

11.
Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to other cellular proteins, particularly those that localize and function in the nucleus. Enzymes regulating SUMO modification localize in part to nuclear pore complexes (NPCs), indicating that modification of some proteins may occur as they are translocated between the nucleus and the cytoplasm. Substrates that are regulated by SUMO modification at NPCs, however, have not been previously identified. Among the most abundant cargos transported through NPCs are the heterogeneous nuclear ribonucleoproteins (hnRNPs). HnRNPs are involved in various aspects of mRNA biogenesis, including regulation of pre-mRNA splicing and nuclear export. Here, we demonstrate that two subsets of hnRNPs, the hnRNP C and M proteins, are substrates for SUMO modification. We demonstrate that the hnRNP C proteins are modified by SUMO at a single lysine residue, K237, and that SUMO modification at this site decreases their binding to nucleic acids. We also show that Nup358, a SUMO E3 ligase associated with the cytoplasmic fibrils of NPCs, enhances the SUMO modification of the hnRNP C and M proteins. Based on our findings, we propose that SUMO modification of the hnRNP C and M proteins may occur at NPCs and facilitate the nucleocytoplasmic transport of mRNAs.  相似文献   

12.
The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.  相似文献   

13.
In Vivo Dynamics of Nuclear Pore Complexes in Yeast   总被引:7,自引:1,他引:6       下载免费PDF全文
While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.  相似文献   

14.
The nuclear envelope is a double lipid bilayer that physically separates the functions of the nucleus and the cytoplasm of eukaryotic cells. Regulated transport of molecules between the nucleus and the cytoplasm is essential for normal cell metabolism and is mediated by large protein complexes, termed nuclear pore complexes (NPCs), which span the inner and outer membranes of the nuclear envelope. Significant progress has been made in the past 10 years in identifying the protein composition of NPCs and the basic molecular mechanisms by which these complexes facilitate the selective exchange of molecules between the nucleus and the cytoplasm. However, many fundamentally important questions about the functions of NPCs, the specific functions of individual NPC-associated proteins, and the assembly and disassembly of NPCs, remain unanswered. This review describes approaches for isolating and characterizing nuclear envelopes and NPC-associated proteins from mammalian cells. It is anticipated that these procedures can be used as a starting point for further molecular and biochemical analysis of the mammalian nuclear envelope, NPCs, and NPC-associated proteins.  相似文献   

15.
Conformational changes of the in situ nuclear pore complex.   总被引:6,自引:0,他引:6       下载免费PDF全文
By bridging the double membrane separating the cell nucleus and cytoplasm, nuclear pore complexes (NPCs) are crucial pathways for the exchange of ions, proteins, and RNA between these two cellular compartments. A structure in the central lumen of the NPC, called the nuclear transport protein, central granule, or nuclear plug, appeared to gate diffusion of intermediate-sized molecules (10-40 kDa) across the nuclear membranes. Visualization of the NPC required drying and fixation of the specimen for electron and atomic force microscopy (AFM), a requirement that has raised doubts about the physiological relevance of the observation. Here we present AFM images of the outer nuclear membranes and NPCs of Xenopus laevis oocytes under more physiological conditions. Measured under a variety of Ca2+ depletion conditions, the central granule appeared to occupy and occlude the lumen of the pore in >80% of NPCs compared to <10% in controls. In a few instances images were obtained of the same NPCs as the solution was changed from control saline to store depletion conditions, and finally to store repletion conditions. We conclude that the central lumen of the nuclear pore complex undergoes a conformational change in response to depletion of nuclear cisternal Ca2+ levels.  相似文献   

16.
Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.  相似文献   

17.
The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.  相似文献   

18.
Role of nuclear pore complex in simian virus 40 nuclear targeting.   总被引:9,自引:2,他引:7       下载免费PDF全文
Cytoplasmically injected simian virus 40 (SV40) virions enter the nucleus through nuclear pore complexes (NPCs) and can express large T antigen shortly thereafter (J. Clever, M. Yamada, and H. Kasamatsu, Proc. Natl. Acad. Sci. USA 88:7333-7337, 1991). The nuclear import of the protein components of introduced SV40 was reversibly arrested by chilling and energy depletion, corroborating our previous observation that the nuclear entry of injected SV40 is blocked in the presence of wheat germ agglutinin and an antinucleoporin monoclonal antibody (mAb414), general inhibitors of NPC-mediated import. The nuclear accumulation of virion protein components and large T antigen in nonpermissive NIH 3T3 cells was similar to that in the permissive host, indicating that the ability to use NPCs as a route of nuclear entry appears to be a general property of the injected virus. Injected virions were capable of completing their lytic cycle and forming plaques in permissive cells. During the early phase of SV40 infection, the cytoplasmic injection of mAb414 effectively blocked nuclear T-antigen accumulation for up to 8 h of infection but had very little effect after 12 h of infection. The time-dependent interference with nuclear T-antigen accumulation by the antinucleoporin antibody is consistent with the hypothesis that the infecting virions enter the nucleus through NPCs. The interference study also suggests that the early phase of infection consists of at least two steps: a step for virion cell entry and intracytoplasmic trafficking and a step for virion nuclear entry followed by large-T-antigen gene expression and subsequent nuclear localization of the gene product. Virions were visualized as electron-dense particles in ultrathin sections of samples in which transport was permitted or arrested. In the former cells, electron-dense particles were predominantly observed in the nucleus. The virions were distributed randomly and nonuniformly in the nucleoplasm but were not observed in heterochromatin or in nucleoli. In the latter cells, the electron-dense particles were seen intersecting the nuclear envelope, near the inner nuclear membrane, and in NPCs. In tangential cross sections of NPCs, which appeared as donut-shaped structures, a spherical electron-dense particle was observed in the center of the structure. Immunoelectron microscopy revealed that NPCs were selectively decorated with 5-nm colloidal gold particles-anti-Vp1 immunoglobulin G at the cytoplasmic entrance to and in NPCs, confirming that the morphologically observed electron-dense particles in NPCs contain the viral structural protein. These results support the hypothesis that the nuclear import of SV40 is catalyzed through NPCs by an active transport mechanism that is similar to that of other karyophiles.  相似文献   

19.
The integrity of the nuclear envelope barrier relies on membrane remodeling by the ESCRTs, which seal nuclear envelope holes and contribute to the quality control of nuclear pore complexes (NPCs); whether these processes are mechanistically related remains poorly defined. Here, we show that the ESCRT‐II/III chimera, Chm7, is recruited to a nuclear envelope subdomain that expands upon inhibition of NPC assembly and is required for the formation of the storage of improperly assembled NPCs (SINC) compartment. Recruitment to sites of NPC assembly is mediated by its ESCRT‐II domain and the LAP2‐emerin‐MAN1 (LEM) family of integral inner nuclear membrane proteins, Heh1 and Heh2. We establish direct binding between Heh2 and the “open” forms of both Chm7 and the ESCRT‐III, Snf7, and between Chm7 and Snf7. Interestingly, Chm7 is required for the viability of yeast strains where double membrane seals have been observed over defective NPCs; deletion of CHM7 in these strains leads to a loss of nuclear compartmentalization suggesting that the sealing of defective NPCs and nuclear envelope ruptures could proceed through similar mechanisms.  相似文献   

20.
Nuclear pore complexes (NPCs) are large macromolecular structures embedded in the nuclear envelope (NE), where they facilitate exchange of molecules between the cytoplasm and the nucleoplasm. In most cell types, NPCs are evenly distributed around the NE. However, the mechanisms dictating NPC distribution are largely unknown. Here, we used the model organism Caenorhabditis elegans to identify genes that affect NPC distribution during early embryonic divisions. We found that down-regulation of the Sm proteins, which are core components of the spliceosome, but not down-regulation of other splicing factors, led to clustering of NPCs. Down-regulation of Sm proteins also led to incomplete disassembly of NPCs during mitosis, but had no effect on lamina disassembly, suggesting that the defect in NPC disassembly was not due to a general defect in nuclear envelope breakdown. We further found that these mitotic NPC remnants persisted on an ER membrane that juxtaposes the mitotic spindle. At the end of mitosis, the remnant NPCs moved toward the chromatin and the reforming NE, where they ultimately clustered by forming membrane stacks perforated by NPCs. Our results suggest a novel, splicing-independent, role for Sm proteins in NPC disassembly, and point to a possible link between NPC disassembly in mitosis and NPC distribution in the subsequent interphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号