首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model for Cell Wall Growth of Streptococcus faecalis   总被引:46,自引:36,他引:10       下载免费PDF全文
In exponentially growing and dividing cells of Streptococcus faecalis, it is proposed that the leading edge of the annularly closing cross wall is the point of extension for both cross wall and peripheral wall. Peripheral wall extension is thought to be produced by the separation or splitting of the cross wall at its junction with peripheral wall. This results in the pushing of the equatorial wall bands, found on S. faecalis walls, to subsequatorial positions. These bands therefore mark the separation of old wall from new wall. Mesosomal formation was observed usually to precede cross wall initiation.  相似文献   

2.
水稻胚囊壁的形成与发育观察   总被引:3,自引:0,他引:3  
通过透射电镜对水稻(Oryza sativa L.)功能大孢子形成开始至胚囊成熟期间胚囊壁的形成与发育进行观察,结果表明:水稻胚囊壁是在原有功能大孢子壁的基础上,通过与其周围退化珠心细胞留下的壁相叠合,使壁加厚。功能大孢子近合点端壁存在胞间连丝,其中个别胞间连丝可保留到八核胚囊。胚囊壁上内突最早于四核胚囊近珠孔端发生。八核胚囊形成后,内突的发育在胚囊不同的细胞中表现不同,其中以中央细胞最具特点,表现为先在中央细胞与珠心相接的近珠孔端和近合点端两个区域的胚囊壁上形成,以后近珠孔端胚囊壁上的内突大量增加,而近合点端的却增加不明显,中部胚囊壁上的内突出现的时间相对较晚。到胚囊成熟时,近珠孔端胚囊壁上内突的分布密度最大,中部次之,近合点端的最小,三个区域上内突的形态各异。反足细胞与珠心相接的胚囊壁上内突的形成时间较早,但以后的发育却相对缓慢,数量增加不明显。2个助细胞交界处胚囊壁上的丝状器在胚囊未明显膨大时已形成。卵细胞除在与助细胞交界处的壁外,其它部位不形成明显的内突结构。  相似文献   

3.
Cell wall modification is an important aspect of plant acclimation to environmental stresses. Structural changes of the existing cell wall mediated by various cell wall modifying proteins help a plant adjust to environmental changes by regulating growth and policing the entry of biotic agents. For example, accelerated shoot growth during submergence and shading allows some plants to escape these unfavorable conditions. This is mediated by the regulation of wall modifying proteins that alter cell wall structure and allow it to yield to turgor, thus fueling cellular expansion. Regulation of cell wall protein activity results in growth modulation during drought, where maintenance of root growth through changes in wall extensibility is an important adaptation to water deficit. Freeze-tolerant plants adjust their cell wall properties to prevent freezing-induced dehydration and also use the cell wall as a barrier against ice crystal propagation. Cell wall architecture is an important determinant of plant resistance to biotic stresses. A rigid cell wall can fend off pathogen attack by forming an impenetrable, physical barrier. When breached, products released during wall modification can trigger plant defense signaling. This review documents and discusses studies demonstrating the importance of timely cell wall modification during plant stress responses by focusing on a well-researched subset of wall modifying proteins.  相似文献   

4.
The growing process and the fine structure of the cross wall of Staphylococcus were investigated by electron microscopy. Examination of the tangentially sectioned cross wall revealed that it was initially synthesized as a thin cell wall layer by an invaginated cytoplasmic membrane. The wall thickness soon increased by additional synthesis of the wall from the cytoplasmic membrane located at the side region of the cross wall. Scanning electron microscopic observation of sodium dodecyl sulfate-treated and mechanically separated cross walls revealed that the outer surface of the cross wall exhibits regular circular structures and the inner surface showed has an irregular surface. This indicates that cell wall materials were arranged in a regular circular manner in the initially synthesized thin layer. It is conceivable that in Staphylococcus spp. two cell wall synthesizing systems are present: wall-elongation synthesis in which wall materials are arranged in a regular circular manner and wall-thickening synthesis in which wall materials are arranged in an irregular manner.  相似文献   

5.
How cell wall elasticity, plasticity, and time‐dependent extension (creep) relate to one another, to plant cell wall structure and to cell growth remain unsettled topics. To examine these issues without the complexities of living tissues, we treated cell‐free strips of onion epidermal walls with various enzymes and other agents to assess which polysaccharides bear mechanical forces in‐plane and out‐of‐plane of the cell wall. This information is critical for integrating concepts of wall structure, wall material properties, tissue mechanics and mechanisms of cell growth. With atomic force microscopy we also monitored real‐time changes in the wall surface during treatments. Driselase, a potent cocktail of wall‐degrading enzymes, removed cellulose microfibrils in superficial lamellae sequentially, layer‐by‐layer, and softened the wall (reduced its mechanical stiffness), yet did not induce wall loosening (creep). In contrast Cel12A, a bifunctional xyloglucanase/cellulase, induced creep with only subtle changes in wall appearance. Both Driselase and Cel12A increased the tensile compliance, but differently for elastic and plastic components. Homogalacturonan solubilization by pectate lyase and calcium chelation greatly increased the indentation compliance without changing tensile compliances. Acidic buffer induced rapid cell wall creep via endogenous α‐expansins, with negligible effects on wall compliances. We conclude that these various wall properties are not tightly coupled and therefore reflect distinctive aspects of wall structure. Cross‐lamellate networks of cellulose microfibrils influenced creep and tensile stiffness whereas homogalacturonan influenced indentation mechanics. This information is crucial for constructing realistic molecular models that define how wall mechanics and growth depend on primary cell wall structure.  相似文献   

6.
On Vessel Member Differentiation in the Bean (Phaseolus vulgaris L.)   总被引:1,自引:0,他引:1  
ESAU  K.; CHARVAT  I. 《Annals of botany》1978,42(3):665-677
Certain ultrastructural features of vessel member differentiationwere examined in the primary xylem of petiole of bean (Phaseolusvulgaris L.). The cells used had helical secondary wall thickeningsand simple perforation plates. The primary cell wall increasesin thickness before the helices of secondary wall develop. Ina common wall between two vessel members of different ages,theprimary thickening occurs first in the older cell so thatfor a time the middle lamella is located closer to the youngercell rather than medianly. Apparently the helix is depositedafter the primary wall of a given cell reaches maximum thickness.The perforation of the end wall is preceded by primary thickeningof the part of the wall that is later removed. The marginalregion remains relatively thin and becomes covered with a rimof secondary wall. Vesicles with fibrous content appear nearthe surface within the end wall shortly before the perforationoccurs. A highly vacuolated protoplast with a much enlargednucleus and numerous organdIes is present during cell wall differentiation.After that process is completed, the protoplast disintegratesand the primary wall bearing the helix is hydrolysed where itis exposed to the cell lumen and, under certain conditions,also under the secondary wall.  相似文献   

7.
Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.  相似文献   

8.
Cellulase reaction product was localized cytochemically at the ultrastructural level in the cell wall of disc cells, the secretory cavity and in the subcuticular wall of glands inCannabis. Cellulase reaction product was evident in the less dense region of the disc cell wall prior to secretory cavity formation. Reactivity in this region was associated with separation of an outer zone, forming the subcuticular wall, from the inner wall zone adjacent to the plasma membrane of the disc cells. Reaction product was associated with the disc cell wall and fibrillar matrix extending from it into the secretory cavity. Reactivity remained evident over the subcuticular wall throughout enlargement of the secretory cavity. Reaction product also was present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall. The distribution of cellulase reaction product supports an interpretation that cellulase is involved in formation of the secretory cavity and subsequent redistribution of wall products to form the subcuticular wall during development of the secretory cavity.  相似文献   

9.
Analysis of ultrahigh frequency nanomechanical resonators, which are based on double-walled carbon nanotubes (DWCNTs) with various wall lengths, was carried out via classical molecular dynamics simulations. In the case of the inner wall entirely encapsulated inside the outer wall, the outer wall vibration has a significant effect on the vibration of the DWCNT; while in the case of the inner wall longer than the outer wall, the vibration of the extruded inner wall has a substantially stronger effect on the DWCNT vibration. It is shown that variations of the DWCNT resonance frequency with different wall lengths can be well fitted by Pearson VII and Gauss distribution functions. This result is potentially useful for developing design guidelines for making very fine tuners using DWCNT resonators of various wall lengths.  相似文献   

10.
Dynamics of cell wall structure in Saccharomyces cerevisiae   总被引:13,自引:0,他引:13  
The cell wall of Saccharomyces cerevisiae is an elastic structure that provides osmotic and physical protection and determines the shape of the cell. The inner layer of the wall is largely responsible for the mechanical strength of the wall and also provides the attachment sites for the proteins that form the outer layer of the wall. Here we find among others the sexual agglutinins and the flocculins. The outer protein layer also limits the permeability of the cell wall, thus shielding the plasma membrane from attack by foreign enzymes and membrane-perturbing compounds. The main features of the molecular organization of the yeast cell wall are now known. Importantly, the molecular composition and organization of the cell wall may vary considerably. For example, the incorporation of many cell wall proteins is temporally and spatially controlled and depends strongly on environmental conditions. Similarly, the formation of specific cell wall protein-polysaccharide complexes is strongly affected by external conditions. This points to a tight regulation of cell wall construction. Indeed, all five mitogen-activated protein kinase pathways in bakers' yeast affect the cell wall, and additional cell wall-related signaling routes have been identified. Finally, some potential targets for new antifungal compounds related to cell wall construction are discussed.  相似文献   

11.
The structure of the cell wall of Streptococcus faecalis was studied in thin sections and freeze fractures of whole cells and partially purified wall fractions. Also, the structures of wall preparations treated with hot trichloroacetic acid to remove non-peptidoglycan wall polymers were compared with wall preparations that possess a full complement of accessory polymers. The appearance of the wall varied with the degree of hydration of preparations and physical removal of the cell membrane from the wall before study. Seen in freeze fractures of whole cells, the fully hydrated wall seemed to be a thick, largely amorphic layer. Breaking cells with beads caused the cell membrane to separate from the wall and transformed the wall from a predominantly amorphic layer to a structure seemingly made up of two rows of "cobblestones" enclosing a central channel of lower density. Dehydration of walls seemingly caused the cobblestones to be transformed into two bands which continued to be separated by a channel. This channel was also observed in isolated wall preparations treated with hot trichloroacetic acid to remove non-peptidoglycan polymers. These observations are consistent with the interpretation that both peptidogylcan and non-peptidoglycan polymers are concentrated at the outer and inner surfaces of cell walls. These observations are discussed in relation to possible models of wall structure and assembly.  相似文献   

12.
Summary The fine structure of ungerminated and aerobically germinated sporangiospores of Mucor rouxii was compared. The germination process may be divided into two stages: I, spherical growth; II, emergence of a germ tube. In both stages, germination is growth in its strictest sense with overall increases in cell organelles; e.g., the increase in mitochondria is commensurate with the overall increase in protoplasmic mass. Noticeable changes occurring during germination are the disappearance of electron-dense lipoid bodies, formation of a large central vacuole and, most strikingly, formation of a new cell wall. Unlike many other fungi, M. rouxii does not germinate by converting the spore wall into a vegetative wall. Instead, as in other Mucorales, a vegetative wall is formed de novo under the spore wall during germination stage I. This new wall grows out, rupturing the spore wall, to become the germ tube wall. Associated with the apical wall of the germ tube is an apical corpuscle previously described. The vegetative wall exhibits a nonlayered, uniformly microfibrillar appearance in marked distinction to the spore wall which is triple-layered, with two thin electron dense outer layers, and a thick transparent inner stratum. The lack of continuity between the spore and vegetative walls is correlated with marked differences in wall chemistry previously reported. A separate new wall is also formed under the spore wall during anaerobic germination leading to yeast cell formation. On the other hand, in the development of one vegetative cell from another, such as in the formation of hyphae from yeast cells, the cell wall is structurally continuous. This continuity is correlated with a similarity in chemical composition of the cell wall reported earlier.  相似文献   

13.
A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix.  相似文献   

14.
At the end of mitosis in the lily pollen microspore, the fan-shaped cell plate gives rise to a cell wall delineating a hemispherical cell. At first, the cell wall of the newly formed generative cell and the intine-3 layer of the pollen grain wall are inseparable. Gradually, the wall of the generative cell near the pollen grain wall becomes thicker and wall segments are formed between the thickened zones, and these make a network system by which the generative cell becomes suspended and separated from the pollen grain wall. After the separation, the intine-3 layer is formed inside the intine 2. The generative cell wall and the intine-3 layer are formed by coated vesicles, polysaccharide particles and rough ER.  相似文献   

15.
The cell wall is a critical extracellular structure that provides protection and structural support in plant cells. To study the biological function of the cell wall and the regulation of cell wall resynthesis, we examined cellular responses to enzymatic removal of the cell wall in rice (Oryza sativa) suspension cells using proteomic approaches. We find that removal of cell wall stimulates cell wall synthesis from multiple sites in protoplasts instead of from a single site as in cytokinesis. Nucleus DAPI stain and MNase digestion further show that removal of the cell wall is concomitant with substantial chromatin reorganization. Histone post-translational modification studies using both Western blots and isotope labeling assisted quantitative mass spectrometry analyses reveal that substantial histone modification changes, particularly H3K18(AC) and H3K23(AC), are associated with the removal and regeneration of the cell wall. Label-free quantitative proteome analyses further reveal that chromatin associated proteins undergo dramatic changes upon removal of the cell wall, along with cytoskeleton, cell wall metabolism, and stress-response proteins. This study demonstrates that cell wall removal is associated with substantial chromatin change and may lead to stimulation of cell wall synthesis using a novel mechanism.  相似文献   

16.
不同硼效率甘蓝型油菜品种细胞壁中硼的分配   总被引:11,自引:0,他引:11  
应用不同硼效率甘蓝型油菜品种 ,研究硼在细胞壁中的分配。硼主要结合在细胞壁中 ,缺硼显著提高硼在细胞壁中的分配比例。根系细胞壁硼含量显著低于叶片 ,但根系细胞壁硼占根系总硼量之比例显著高于叶片。同一品种根系及其细胞壁、老叶细胞壁硼含量受生育期影响较小 ,新叶及其细胞壁、老叶硼含量受生育期影响较大。在正常供硼条件下 ,硼高效品种根系细胞壁和叶片细胞壁硼含量均低于低效品种 ;正常和缺硼条件下 ,硼高效品种细胞壁硼占器官总硼量之比例均低于低效品种。说明硼低效品种需较多的硼构建细胞壁。  相似文献   

17.
Summary An antibody to the inner wall layer ofGloeomonas kupfferi was isolated and used in a developmental analysis of cell wall processing, secretion and extracellular assembly. The focus of the processing of this matrix layer is the endomembrane system, in particular the Golgi apparatus (GA) and contractile vacuole (CV). During interphase, inner wall materials are processed in the GA, packaged in trans face vesicles and transported to the CV, the final internal depository of wall precursors until release to the cell surface. During cell division, significant changes occur in the inner wall layer processing. Early on in cytokinesis, the GA does not label with our antibody, suggesting that other wall layers are being processed. In later stages of cytokinesis, the GA changes in morphology and begins to produce inner wall layer materials. These wall precursors are shuttled to the CV where they are released around the daughter cell protoplasts. The first wall layer that is formed around daughter cells is the crystalline median wall layer. Once assembled, the inner wall layer condenses upon the crystalline layer and grows in size.  相似文献   

18.
The energy accommodation coefficient (EAC) used in thermal boundary condition in micro- and nano-gas flows is reported to be always less than unity and greatly influenced by wall characteristics, for example, the wall temperature. A statistical EAC definition was described to calculate the EAC for thermal conduction in argon gas between two smooth platinum plates from two-dimensional non-equilibrium molecular dynamics simulations. The non-equilibrium EAC at the upper wall was calculated for different upper wall temperatures and a fixed bottom wall temperature. The equilibrium EAC at each temperature can then be extrapolated from a series of non-equilibrium EACs as the temperature difference between the two walls approaches zero. The analyses of the effects of wall temperature for various Knudsen number on non-equilibrium and equilibrium EACs show that, for a given lower bottom wall temperature, the non-equilibrium EAC at a high temperature wall increases with an increase in the wall temperature. For a given wall temperature difference, the non-equilibrium EAC increases with the increase in the wall temperatures. The equilibrium EAC also becomes larger at higher temperatures.  相似文献   

19.
An inositol deficiency in the inositol-requiring (inl) mutant of Neurospora crassa led to changes in the composition of the inositol-containing lipids and the cell wall. On deficient levels of inositol, phosphatidyl inositol decreased by 23-fold, di(inositolphosphoryl) ceramide decreased by 4-fold, and monoinositolphosphoryl ceramide increased slightly. The inositol deficiency also led to an aberrant hyphal morphology and changes in both the amount of cell wall and the amino sugar content of the cell wall. The glucosamine content of the cell wall decreased by 50%, the galactosamine increased by 50%, but no significant changes were found in the content of the cell wall amino sugar precursors, or in the amino acid, glucose, or total hexose content of the cell wall. Inositol-containing compounds were found associated with purified cell wall material. These compounds were bound tightly to the cell wall but could be removed by treatment with alkali, a treatment which disrupts the cell wall integrity. Possible mechanisms of how changes in lipid composition can affect cell wall biosynthesis are discussed.  相似文献   

20.
Wang SB  Chen F  Sommerfeld M  Hu Q 《Proteomics》2005,5(18):4839-4851
The green alga Haematococcus pluvialis has a plant-like cell wall consisting of glycoproteins and cellulose that is modified during the cell cycle and under various conditions. These features allow Haematococcus to be used as a model organism for studying cell wall biology. Development of the Haematococcus model is hampered by the absence of mutants that could provide insight into the biosynthesis and assembly of wall components. Haematococcus mutants (WM#537 and WM#2978) (WM--wall mutant) with defective cell walls were obtained by chemical mutagenesis. WM#537 features a secondary wall of considerably reduced thickness, whereas WM#2978 possesses a somewhat reduced secondary wall with little intervening space between the wall and plasmalemma. 2-DE revealed that a majority of the cell wall proteins were present in the wild-type and mutant cell walls throughout the cell cycle. PMF identified 55 wall protein orthologs from these strains, including a subset of induced proteins known to be involved in wall construction, remodeling, and defense. Down-regulation of certain wall proteins in the two mutants was associated with the wall defects, whereas overexpression of other proteins may have compensated for the defective walls in the two mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号