首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotine is a main alkaloid in tobacco and is also the primary toxic compound in tobacco wastes. It can be degraded by bacteria via either pyridine pathway or pyrrolidine pathway. Previously, a fused pathway of the pyridine pathway and the pyrrolidine pathway was proposed for nicotine degradation by Agrobacterium tumefaciens S33, in which 6-hydroxy-3-succinoylpyridine (HSP) is a key intermediate connecting the two pathways. We report here the purification and properties of an NADH-dependent HSP hydroxylase from A. tumefaciens S33. The 90-kDa homodimeric flavoprotein catalyzed the oxidative decarboxylation of HSP to 2,5-dihydroxypyridine (2,5-DHP) in the presence of NADH and FAD at pH 8.0 at a specific rate of about 18.8±1.85 µmol min−1 mg protein−1. Its gene was identified by searching the N-terminal amino acid residues of the purified protein against the genome draft of the bacterium. It encodes a protein composed of 391 amino acids with 62% identity to HSP hydroxylase (HspB) from Pseudomonas putida S16, which degrades nicotine via the pyrrolidine pathway. Considering the application potential of 2,5-DHP in agriculture and medicine, we developed a route to transform HSP into 2,5-DHP with recombinant HSP hydroxylase and an NADH-regenerating system (formate, NAD+ and formate dehydrogenase), via which around 0.53±0.03 mM 2,5-DHP was produced from 0.76±0.01 mM HSP with a molar conversion as 69.7%. This study presents the biochemical properties of the key enzyme HSP hydroxylase which is involved in the fused nicotine degradation pathway of the pyridine and pyrrolidine pathways and a new green route to biochemically synthesize functionalized 2,5-DHP.  相似文献   

2.
There are quite a few ongoing biochemical investigations of nicotine degradation in different organisms. In this work, we identified and sequenced a gene (designated nicA) involved in nicotine degradation by Pseudomonas putida strain S16. The gene product, NicA, was heterologously expressed and characterized as a nicotine oxidoreductase catalyzing the initial steps of nicotine metabolism. Biochemical analyses using resting cells and the purified enzyme suggested that nicA encodes an oxidoreductase, which converts nicotine to 3-succinoylpyridine through pseudooxynicotine. Based on enzymatic reactions and direct evidence obtained using H218O labeling, the process may consist of enzyme-catalyzed dehydrogenation, followed by spontaneous hydrolysis and then repetition of the dehydrogenation and hydrolysis steps. Sequence comparisons revealed that the gene showed 40% similarity to genes encoding NADH dehydrogenase subunit I and cytochrome c oxidase subunit I in eukaryotes. Our findings demonstrate that the molecular mechanism for nicotine degradation in strain S16 involves the pyrrolidine pathway and is similar to the mechanism in mammals, in which pseudooxynicotine, the direct precursor of a potent tobacco-specific lung carcinogen, is produced.  相似文献   

3.
A newly isolated strain, SJY1, identified as Ochrobactrum sp., utilizes nicotine as a sole source of carbon, nitrogen, and energy. Strain SJY1 could efficiently degrade nicotine via a variant of the pyridine and pyrrolidine pathways (the VPP pathway), which highlights bacterial metabolic diversity in relation to nicotine degradation. A 97-kbp DNA fragment containing six nicotine degradation-related genes was obtained by gap closing from the genome sequence of strain SJY1. Three genes, designated vppB, vppD, and vppE, in the VPP pathway were cloned and heterologously expressed, and the related proteins were characterized. The vppB gene encodes a flavin-containing amine oxidase converting 6-hydroxynicotine to 6-hydroxy-N-methylmyosmine. Although VppB specifically catalyzes the dehydrogenation of 6-hydroxynicotine rather than nicotine, it shares higher amino acid sequence identity with nicotine oxidase (38%) from the pyrrolidine pathway than with its isoenzyme (6-hydroxy-l-nicotine oxidase, 24%) from the pyridine pathway. The vppD gene encodes an NADH-dependent flavin-containing monooxygenase, which catalyzes the hydroxylation of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine. VppD shows 62% amino acid sequence identity with the hydroxylase (HspB) from Pseudomonas putida strain S16, whereas the specific activity of VppD is ∼10-fold higher than that of HspB. VppE is responsible for the transformation of 2,5-dihydroxypyridine. Sequence alignment and phylogenetic analysis suggested that the VPP pathway, which evolved independently from nicotinic acid degradation, might have a closer relationship with the pyrrolidine pathway. The proteins and functional pathway identified here provide a sound basis for future studies aimed at a better understanding of molecular principles of nicotine degradation.  相似文献   

4.
Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33.  相似文献   

5.
A novel nicotine-degrading Pseudomonas sp. strain, HZN6, was isolated from a pesticide-wastewater treatment facility in Hangzhou. The strain could grow on nicotine as its sole source of carbon, nitrogen, and energy. The strain’s main intermediate metabolites were determined to be pseudooxynicotine, 3-succinoyl-pyridine (SP), and 6-hydroxy-3-succinoyl-pyridine (HSP). A Tn5 transposon mutant was generated in which the degradation pathway was blocked at the SP. A 4,583-bp DNA fragment flanking the transposon insertion site was obtained through self-formed adaptor PCR and analyzed. The mutant gene orfC displays 89% deduced amino acid sequence identity with the sirA-like gene (sirA2, a sulfurtransferase homologue gene) of Pseudomonas stutzeri A1501. The orfC-disrupted strain lost the ability to degrade SP, and the complementation strains with the orfC from the Pseudomonas sp. HZN6 and the sirA2 (PP_1233) from Pseudomonas putida KT2440 recovered the degradation ability. Though the orfC-disrupted strain also lost the xanthine dehydrogenase activity, the effects of tungsten on the degradation of SP and hypoxanthine revealed that the hydroxylation of SP to HSP was not a xanthine dehydrogenase type. These results demonstrated that the orfC gene was essential for the SP metabolism involved in the nicotine metabolic pathway in the Pseudomonas sp. HZN6 strain. This study might advance the understanding of the nicotine metabolic mechanism in Pseudomonas.  相似文献   

6.
Nicotine is a significant toxic waste generated in tobacco manufacturing. Biological methods for the degradation of nicotine waste are in high demand. In this study, we report the identification and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. This strain can degrade 500 mg/L nicotine completely within 3 h at 30 °C and pH values of 6.5?~?8.0. The biodegradation of nicotine by Shinella sp. HZN7 involves five intermediate metabolites: 6-hydroxy-nicotine (6HN), 6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine (6HPON), 6-hydroxy-3-succinoyl-pyridine (HSP), and 2,5-dihydroxypyridine, as detected by ultraviolet spectrophotometry, HPLC, and LC-MS. We generated three mutants, N7-W18, N7-X5, and N7-M17, by transposon mutagenesis, in which the nicotine-degrading pathway terminated at 6HN, 6HPON, and HSP, respectively. The production of the five intermediate metabolites and their order in the degradation pathway were confirmed in the three mutants, indicating that strain HZN7 degrades nicotine via a variant of the pyridine and pyrrolidine pathways. The mutant gene from strain N7-X5, orf2, was cloned by self-formed adaptor PCR, but the nucleotide and amino acid sequence showed no similarity to any gene or gene product with defined function. However, orf2 disruption and complementation suggested that the orf2 gene is essential for the conversion of 6HPON to HSP in strain HZN7. This is the first study to provide genetic evidence for this variant nicotine degradation pathway.  相似文献   

7.
Nicotine, a major alkaloid in tobacco plants and the main toxic chemical in tobacco wastes, can be transformed by bacteria into hydroxylated-pyridine intermediates, which are important precursors for the chemical synthesis of valuable drugs and insecticides. Such biotransformation could be a useful approach to utilize tobacco and its wastes. In this study, we explored nicotine degradation by a recently isolated Agrobacterium tumefaciens S33 by identifying the intermediates during its growth on nicotine and during transformation of nicotine with its resting cells. Five hydroxylated-pyridine intermediates were detected through multiple approaches, including GC-HR-MS, HPLC, and ESI-Q-TOF MS analyses. Surprisingly, these identified intermediates suggest that strain S33 employs a novel pathway that is different from the two characterized pathways described in Arthrobacter and Pseudomonas. Based on these findings, we propose that strain S33 is able to transform nicotine to 6-hydroxy-pseudooxynicotine first via the pyridine pathway through 6-hydroxy-L: -nicotine and 6-hydroxy-N-methylmyosmine, and then, it turns to the pyrrolidine pathway with the formation of 6-hydroxy-3-succinoylpyridine and 2,5-dihydroxypyridine. The activities of the key enzymes, nicotine dehydrogenase, 6-hydroxy-L: -nicotine oxidase, and 6-hydroxy-3-succinoylpyridine hydroxylase, were demonstrated in the cell extract of strain S33 and by partially enriched enzymes. Moreover, the cell extract could transform 6-hydroxy-pseudooxynicotine into 6-hydroxy-3-succinoylpyridine by coupling with 6-hydroxy-L: -nicotine oxidation reaction by 6-hydroxy-L: -nicotine oxidase. These results indicated that strain S33 can transform nicotine into renewable hydroxylated-pyridine intermediates by the special pathway, in which at least three intermediates, 6-hydroxy-L: -nicotine, 6-hydroxy-3-succinoylpyridine, and 2,5-dihydroxypyridine, have potential to be further chemically modified into useful compounds.  相似文献   

8.
9.
Nicotine, the main alkaloid produced by Nicotiana tabacum and other Solanaceae, is very toxic and may be a leading toxicant causing preventable disease and death, with the rise in global tobacco consumption. Several different microbial pathways of nicotine metabolism have been reported: Arthrobacter uses the pyridine pathway, and Pseudomonas, like mammals, uses the pyrrolidine pathway. We identified and characterized a novel 6-hydroxy-3-succinoyl-pyridine (HSP) hydroxylase (HspB) using enzyme purification, peptide sequencing, and sequencing of the Pseudomonas putida S16 genome. The HSP hydroxylase has no known orthologs and converts HSP to 2,5-dihydroxy-pyridine and succinic semialdehyde, using NADH. (18)O(2) labeling experiments provided direct evidence for the incorporation of oxygen from O(2) into 2,5-dihydroxy-pyridine. The hspB gene deletion showed that this enzyme is essential for nicotine degradation, and site-directed mutagenesis identified an FAD-binding domain. This study demonstrates the importance of the newly discovered enzyme HspB, which is crucial for nicotine degradation by the Pseudomonas strain.  相似文献   

10.
Ochrobactrum sp. strain SJY1 utilizes nicotine as a sole source of carbon, nitrogen, and energy via a variant of the pyridine and pyrrolidine pathways (the VPP pathway). Several strains and genes involved in the VPP pathway have recently been reported; however, the first catalyzing step for enzymatic turnover of nicotine is still unclear. In this study, a nicotine hydroxylase for the initial hydroxylation step of nicotine degradation was identified and characterized. The nicotine hydroxylase (VppA), which converts nicotine to 6-hydroxynicotine in the strain SJY1, is encoded by two open reading frames (vppAS and vppAL [subunits S and L, respectively]). The vppA genes were heterologously expressed in the non-nicotine-degrading strains Escherichia coli DH5α and Pseudomonas putida KT2440; only the Pseudomonas strain acquired the ability to degrade nicotine. The small subunit of VppA contained a [2Fe-2S] cluster-binding domain, and the large subunit of VppA contained a molybdenum cofactor-binding domain; however, an FAD-binding domain was not found in VppA. Resting cells cultivated in a molybdenum-deficient medium had low nicotine transformation activity, and excess molybdenum was detected in the purified VppA by inductively coupled plasma-mass spectrometry analysis. Thus, it is demonstrated that VppA is a two-component molybdenum-containing hydroxylase.  相似文献   

11.
Nicotine is a natural alkaloid produced by tobacco plants, and the mechanisms of its catabolism by microorganisms are diverse. In the present study, we reported the mutation, cloning, and identification of two novel genes involved in nicotine degradation from the newly isolated Pseudomonas sp. strain HZN6. Transposon mutagenesis identified a HZN6 mutant in which the nicotine-degrading pathway was blocked at pseudooxynicotine. A 3,874-bp DNA fragment flanking the transposon insertion site was obtained through self-formed adaptor PCR. Two open reading frames (designated pao and sap) were analyzed, and the deduced amino acid sequences shared 29% identity with 6-hydroxy-l-nicotine oxidase from Arthrobacter nicotinovorans and 49% identity with an aldehyde dehydrogenase from Bartonella henselae. Both pao and sap were cloned and functionally expressed in recombinant Escherichia coli BL21. The pao gene encoded a novel pseudooxynicotine amine oxidase with noncovalently bound flavin adenine dinucleotide (FAD) and exhibited substrate specificity removing the methylamine from pseudooxynicotine with the formation of 3-succinoylsemialdehyde-pyridine and hydrogen dioxide. The sap gene encoded a NADP(+)-dependent 3-succinoylsemialdehyde-pyridine dehydrogenase that catalyzed the dehydrogenation of 3-succinoylsemialdehyde-pyridine to 3-succinoyl-pyridine. Genetic analyses indicated that the pao gene played an essential role in nicotine or pseudooxynicotine mineralization in strain HZN6, whereas the sap gene did not. This study provides novel insight into the nicotine-degrading mechanism at the genetic level in Pseudomonas spp.  相似文献   

12.
Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s−1) and nicotine (Km = 2.03 mM, kcat = 0.396 s−1) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation.  相似文献   

13.
Exophiala lecanii-corni is a dimorphic fungus capable of degrading several volatile organic compounds (VOCs) including ethylbenzene, which has been classified as a hazardous air pollutant by the Environmental Protection Agency. In contrast to bacterial species, little is known about the mechanisms of fungal degradation of VOCs. The results described herein suggest a potential pathway for ethylbenzene degradation in E. lecanii-corni via styrene, phenylacetate and homogentisate. Consistent with this proposed pathway, a full-length homogentisate-1,2-dioxygenase gene (ElHDO) has been identified, cloned and sequenced. The nucleotide sequence of ElHDO consists of a 1,452-bp open reading frame encoding a protein with 484 amino acids. The expression of the gene product increases when grown on ethylbenzene, further suggesting that it could be involved in ethylbenzene degradation and may be responsible for the aromatic ring cleavage reaction. In addition, a 907-bp fragment isolated upstream from this gene shares 78% sequence identity at the amino acid level with the amino acid sequences of two fungal phenylacetate hydroxylase genes. This observation suggests that the genes responsible for ethylbenzene degradation may be clustered. This research constitutes the first step towards a better understanding of ethylbenzene degradation in E. lecanii-corni.  相似文献   

14.
6-Hydroxy-3-succinoyl-pyridine (HSP) 3-monooxygenase (HspB), a flavoprotein essential to the pyrrolidine pathway of nicotine degradation, catalyzes pyridine-ring β-hydroxylation, resulting in carbon-carbon cleavage and production of 2,5-dihydroxypyridine. Here, we generated His6-tagged HspB in Escherichia coli, characterized the properties of the recombinant enzyme, and investigated its mechanism of catalysis. In contrast to conclusions reported previously, the second product of the HspB reaction was shown to be succinate, with isotope labeling experiments providing direct evidence that the newly introduced oxygen atom of succinate is derived from H2O. Phylogenetic analysis reveals that HspB is the most closely related to two p-nitrophenol 4-monooxygenases, and the experimental results exhibit that p-nitrophenol is a substrate of HspB. The reduction of HspB (with maxima at 375 and 460 nm, and a shoulder at 485 nm) by NADH was followed by stopped-flow spectroscopy, and the rate constant for reduction was shown to be stimulated by HSP. Reduced HspB reacts with oxygen to form a C(4a)-(hydro)peroxyflavin intermediate with an absorbance maximum at ∼400 nm within the first few milliseconds before converting to the oxidized flavoenzyme species. The formed C(4a)-hydroperoxyflavin intermediate reacts with HSP to form an intermediate that hydrolyzes to the products 2,5-dihydroxypyridine and succinate. The investigation on the catalytic mechanism of a flavoprotein pyridine-ring β-position hydroxylase provides useful information for the biosynthesis of pyridine derivatives.  相似文献   

15.
Mycobacterium sp. strain THO100 was isolated from a morpholine-containing culture of activated sewage sludge. This strain was able to utilize pyrrolidine, morpholine, piperidine, piperazine, and 1,2,3,6-tetrahydropyridine as the sole sources of carbon, nitrogen, and energy. The degradation pathway of pyrrolidine as the best substrate for cellular growth was proposed based on the assays of substrate-induced cytochrome P450 and constitutive enzyme activities toward 4-aminobutyric acid (GABA) and succinic semialdehyde (SSA). Its 16S ribosomal RNA gene sequence (16S rDNA) was identical to that of Mycobacterium tokaiense ATCC 27282T. The morABC genes responsible for alicyclic amine degradation were nearly identical among different species of Mycobacteria. Remarkably, repetitive sequences at the intergenic spacer (IGS) region between morC and orf1’ were detected by comparison of the nearly identical mor gene cluster regions. Considering the strain activity for alicyclic amine degradation, the deleted 65-bp DNA segment did not significantly alter the open reading frames, and the expression and functions of the P450mor system remained unaltered. In addition, we found a spontaneous deletion of P450mor from another strain HE5 containing the archetypal mor gene cluster, which indicated a possible occurrence of DNA recombination to rearrange the DNA.  相似文献   

16.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

17.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding β-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsΩGm and Pseudomonas sp. strain HRechΩKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatΩKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a β-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

18.
The genes encoding creatininase (CrnA; 258 residues) and creatinase (CreA; 411 residues) from Arthrobacter sp. TE1826 were cloned and sequenced. The genes form a cluster with the sarcosine oxidase gene (soxA) and its regulator gene (soxR), which were cloned previously. The deduced amino acid sequences of CrnA and CreA show 35.9% and 63.1% identity, respectively to the corresponding Pseudomonas enzymes. CrnA and CreA were purified from the recombinant strains and characterized. Other open reading frames (creB and crnB), encoding proteins similar to several transporters, were found downstream of creA and crnA, respectively.  相似文献   

19.
20.
Pseudomonas sp. strain NyZ402 was isolated for its ability to grow on para-nitrophenol (PNP) as a sole source of carbon, nitrogen, and energy, and was shown to degrade PNP via an oxidization pathway. This strain was also capable of growing on hydroquinone or catechol. A 15, 818 bp DNA fragment extending from a 800-bp DNA fragment of hydroxyquinol 1,2-dioxygenase gene (pnpG) was obtained by genome walking. Sequence analysis indicated that the PNP catabolic gene cluster (pnpABCDEFG) in this fragment shared significant similarities with a recently reported gene cluster responsible for PNP degradation from Pseudomonas sp. strain WBC-3. PnpA is PNP 4-monooxygenase converting PNP to hydroquinone via benzoquinone in the presence of NADPH, and genetic analysis indicated that pnpA plays a key role in PNP degradation. pnpA1 present in the upstream of the cluster (absent in the cluster from strain WBC-3) encodes a protein sharing as high as 55% identity with PnpA, but was not involved in PNP degradation by either in vitro or in vivo analyses. Furthermore, an engineered strain capable of growing on PNP and ortho-nitrophenol (ONP) was constructed by introducing onpAB (encoding ONP monooxygenase and ortho-benzoquinone reductase which catalyzed the transformation of ONP to catechol) from Alcaligenes sp. strain NyZ215 into strain NyZ402.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号