首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background

The nearly 30 000 species of orchids produce flowers of unprecedented diversity. However, whether specific genetic mechanisms contributed to this diversity is a neglected topic and remains speculative. We recently published a theory, the ‘orchid code’, maintaining that the identity of the different perianth organs is specified by the combinatorial interaction of four DEF-like MADS-box genes with other floral homeotic genes.

Scope

Here the developmental and evolutionary implications of our theory are explored. Specifically, it is shown that all frequent floral terata, including all peloric types, can be explained by monogenic gain- or-loss-of-function mutants, changing either expression of a DEF-like or CYC-like gene. Supposed dominance or recessiveness of mutant alleles is correlated with the frequency of terata in both cultivation and nature. Our findings suggest that changes in DEF- and CYC-like genes not only underlie terata but also the natural diversity of orchid species. We argue, however, that true changes in organ identity are rare events in the evolution of orchid flowers, even though we review some likely cases.

Conclusions

The four DEF paralogues shaped floral diversity in orchids in a dramatic way by modularizing the floral perianth based on a complex series of sub- and neo-functionalization events. These genes may have eliminated constraints, so that different kinds of perianth organs could then evolve individually and thus often in dramatically different ways in response to selection by pollinators or by genetic drift. We therefore argue that floral diversity in orchids may be the result of an unprecedented developmental genetic predisposition that originated early in orchid evolution.Key words: Orchidaceae, orchid evolution, evo-devo; perianth, class B genes, DEFICIENS, subfunctionalization, neofunctionalization, gene duplication, peloria, modularization  相似文献   

2.
蝴蝶兰花发育的分子生物学研究进展   总被引:1,自引:0,他引:1  
蝴蝶兰花非常独特且高度进化,如萼片瓣化、瓣片特化为唇瓣、雌雄蕊合生成合蕊柱及子房发育须由授粉启动等,是单子叶植物花发育研究的理想材料。近年来蝴蝶兰花发育分子生物学取得了重要进展。该文就近年来国内外有关蝴蝶兰开花转换及花器官发育相关基因研究以及B类基因与兰花花被的进化发育关系方面的研究进展进行综述。研究表明:MADS基因在蝴蝶兰开花转换及花器官发育过程中起重要作用,推测其中的DEF(DE-FICIENS)-like基因早期经过2轮复制,形成了4类不同的DEF-like基因,进而决定兰花花被属性。蝴蝶兰花发育分子生物学的深入研究,将极大地利于通过基因工程手段提高蝴蝶兰花品质如花色改良及花期调控等,推动分子育种进程。  相似文献   

3.
Floral morphology, anatomy and development are examined in Xyris grandis (Xyridaceae: Poales), with an emphasis on petal and sepal organogenesis and vasculature. Xyris is one of relatively few monocots in which the perianth is differentiated into two distinct whorls (here termed a double perianth). Xyris also possesses highly unusual perianth vasculature, with each petal being supplied by three veins and each sepal by a single vein, compared with the opposite condition in most other angiosperms with a double perianth. However, perianth development in X. grandis shows a pattern that is typical for monocots, with petals not markedly delayed in development. Xyris grandis is also remarkable for its petal aestivation, with each petal surrounding a stamen and two branches of adjacent staminodes, a type that is not reported for other Xyridaceae and may contribute to secondary pollen presentation. The results are discussed in the context of the diversity of a double perianth in monocots, compared with eudicots. Based on current data, our preferred hypothesis is that meristic differences are at least partly responsible for the apparently widespread occurrence of three‐traced petals in monocots. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 93–111.  相似文献   

4.
The classic ABC model explains the activities of each class of floral homeotic genes in specifying the identity of floral organs. Thus, changes in these genes may underlay the origin of floral diversity during evolution. In this study, three MADS-box genes were isolated from the perianthless basal angiosperm Chloranthus spicatus. Sequence and phylogenetic analyses revealed that they are AP1-like, AP3-like and SEP3-like genes, and hence these genes were termed CsAP1, CsAP3 and CsSEP3, respectively. Due to these assignments, they represent candidate class A, class B and class E genes, respectively. Expression patterns suggest that the CsAP1, CsAP3 and CsSEP3 genes function during flower development of C. spicatus. CsAP1 is expressed broadly in the flower, which may reflect the ancestral function of SQUA-like genes in the specification of inflorescence and floral meristems rather than in patterning of the flower. CsAP3 is exclusively expressed in male floral organs, providing the evidence that AP3-like genes have ancestral function in differentiation between male and female reproductive organs. CsSEP3 expression is not detectable in spike meristems, but its mRNA accumulates throughout the flower, supporting the view that SEP-like genes have conserved expression pattern and function throughout angiosperm. Studies of synonymous vs nonsynonymous nucleotide substitutions indicate that these genes have not evolved under changes in evolutionary forces. All the data above suggest that the genes may have maintained at least some ancestral functions despite the lack of perianth in the flowers of C. spicatus. Nucleotide sequences data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers AY316311, AY397762 and AY379963.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Common mechanisms regulate flowering and dormancy   总被引:3,自引:0,他引:3  
David Horvath   《Plant science》2009,177(6):523-531
  相似文献   

12.
13.
14.
MADS-box基因家族基因重复及其功能的多样性   总被引:7,自引:0,他引:7  
基因的重复(duplication)及其功能的多样性(diversification)为生物体新的形态进化提供了原材料。MADS-box基因在植物(特别是被子植物)的进化过程中发生了大规模的基因重复事件而形成一个多基因家族。MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用,在调控开花时间、决定花分生组织和花器官特征以及调控根、叶、胚珠及果实的发育中起着广泛的作用。探讨MADS-box基因家族的进化历史有助于深入了解基因重复及随后其功能分化的过程和机制。本文综述了MADS-box基因家族基因重复及其功能分化式样的研究进展。  相似文献   

15.
16.
17.
18.
19.
吕山花  孟征 《植物学报》2007,24(1):60-70
基因的重复(duplication)及其功能的多样性(diversification)为生物体新的形态进化提供了原材料。MADS-box基因在植物(特别是被子植物)的进化过程中发生了大规模的基因重复事件而形成一个多基因家族。MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用, 在调控开花时间、决定花分生组织和花器官特征以及调控根、叶、胚珠及果实的发育中起着广泛的作用。探讨MADS-box基因家族的进化历史有助于深入了解基因重复及随后其功能分化的过程和机制。本文综述了MADS-box基因家族基因重复及其功能分化式样的研究进展。  相似文献   

20.
Aceto S  Gaudio L 《Current Genomics》2011,12(5):342-356
Since the time of Darwin, biologists have studied the origin and evolution of the Orchidaceae, one of the largest families of flowering plants. In the last two decades, the extreme diversity and specialization of floral morphology and the uncoupled rate of morphological and molecular evolution that have been observed in some orchid species have spurred interest in the study of the genes involved in flower development in this plant family. As part of the complex network of regulatory genes driving the formation of flower organs, the MADS-box represents the most studied gene family, both from functional and evolutionary perspectives. Despite the absence of a published genome for orchids, comparative genetic analyses are clarifying the functional role and the evolutionary pattern of the MADS-box genes in orchids. Various evolutionary forces act on the MADS-box genes in orchids, such as diffuse purifying selection and the relaxation of selective constraints, which sometimes reveals a heterogeneous selective pattern of the coding and non-coding regions. The emerging theory regarding the evolution of floral diversity in orchids proposes that the diversification of the orchid perianth was a consequence of duplication events and changes in the regulatory regions of the MADS-box genes, followed by sub- and neo-functionalization. This specific developmental-genetic code is termed the "orchid code."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号