首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A one-step procedure to detect cellular [3H]retinol and [3H]retinoic acid binding proteins (CRBP and CRABP) from rat testis cytosolic extract was devised. The procedure is based on anion-exchange high-performance liquid chromatography of the cytosolic fraction on columns of Mono Q, which permits elution of CRABP and CRBP at 12 and 22 min, respectively.  相似文献   

2.
Cellular retinoic acid binding protein (CRABP) has been expressed efficiently in Escherichia coli from the cDNA of bovine adrenal CRABP and characterized, especially with respect to affinity for endogenous retinoids and a role for it in retinoic acid metabolism. The purified E. coli-expressed CRABP was similar to authentic mammalian CRABP in molecular weight (approximately 14,700), isoelectric point (4.76), absorbance maxima (apo-CRABP, 280 nm; holo-CRABP, 350 and 280 nm with the ratio A350/A280 = 1.8), and in fluorescence excitation (350 nm) and emission spectra (475 nm). The equilibrium dissociation constant, Kd, of E. coli-derived CRABP and all-trans-retinoic acid was 10 +/- 1 nM (mean +/- S.D., n = 4) by retinoid fluorescence and 7 +/- 1 nM (mean +/- S.D., n = 3) by quenching of protein fluorescence, but neither retinol nor retinal bound in concentrations as high as 7 microM. All-trans-cyclohexyl ring derivatives of retinoic acid (3,4-didehydro-, 4-hydroxy-, 4-oxo-, 16-hydroxy-4-oxo-, 18-hydroxy-) had affinities similar to that of all-trans-retinoic acid, whereas 13-cis-retinoic acid and 4-oxo-13-cis-retinoic acid had approximately 25-fold lower affinity. Holo-CRABP was a substrate for retinoic acid catabolism in rat testes microsomes by three criteria: 1) the rate of retinoic acid metabolism with CRABP in excess of retinoic acid exceeded the rate supported by the free retinoic acid; 2) increasing the apo-CRABP did not decrease the rate as predicted if free retinoic acid were the only substrate; and 3) holo-CRABP had a lower Michaelis constant (1.8 nM) for retinoic acid elimination than did free retinoic acid (49 nM). These data indicate a direct role for CRABP in retinoic acid metabolism and suggest a mechanism for discriminating metabolically between all-trans- and 13-cis-retinoids.  相似文献   

3.
The lumen of the rat epididymis was found to contain two binding activities for retinoic acid. The two proteins could be separated by chromatography on DEAE-cellulose but were essentially identical in binding specificity and molecular weight, as determined by gel filtration. The proteins were clearly distinct from cellular retinoic acid-binding protein and other known retinoid-binding proteins. The binding of various retinoids was examined by sucrose gradient centrifugation assay. The proteins were more discriminating than has been observed for cellular retinoic acid-binding protein. Of the retinoids examined, only 13-cis-retinoic acid showed appreciable ability to compete for binding of all-trans-retinoic acid. Retinol and retinal showed no ability to compete; various ring analogs of retinoic acid had little or no ability to compete. The presence of such binding activities in the lumen of the epididymis could mean that retinoic acid plays a role in sperm maturation and function, if retinoic acid proves to be the endogenous ligand.  相似文献   

4.
In vitro binding of retinoids to the nuclear retinoic acid receptor alpha   总被引:1,自引:0,他引:1  
We describe a rapid method for measuring in vitro binding properties of new synthetic retinoids to the recently identified nuclear receptor RAR alpha. Transfection of cos-7 cells with the expression vector RAR alpha O produces a 100-fold increase in intracellular RAR alpha concentration which allows us to perform accurate determination of binding parameters of various retinoids. Cytosol and nuclear extracts obtained after freeze drying of the transfected cells are incubated with a new stable tritiated analog of retinoic acid, [3H]CD367. Complete separation between RAR alpha and endogenous cellular retinoic acid binding protein is achieved by high-performance size-exclusion chromatography. These improved techniques provide a useful method for determining binding affinities of analogs to RAR alpha.  相似文献   

5.
Chromatographic analysis of endogenous retinoids in tissues and serum   总被引:5,自引:0,他引:5  
We present a reliable, highly sensitive, and versatile method for the simultaneous determination of endogenous polar (acidic) and apolar (retinol, retinal, and retinyl esters) retinoids in various biological matrices. Following a single liquid extraction of retinoids from tissues or plasma with isopropanol, polar retinoids are separated from apolar retinoids and neutral lipids via automated solid-phase extraction using an aminopropyl phase. After vacuum concentration to dryness and reconstitution of the residue in appropriate solvents, the obtained fractions are injected onto two different high-performance liquid chromatography (HPLC)-systems. Polar retinoids are analyzed on a RP18 column (2.1mm ID) using a buffered gradient composed of methanol and water and on-column-focusing large-volume injection. Apolar retinoids are separated on a normal-bore RP18 column using a nonaqueous gradient composed of acetonitrile, chloroform, and methanol. Both HPLC systems are coupled with UV detection, and retinoids are quantitated against appropriate internal standards. The method was validated with regard to recovery, precision, robustness, selectivity, and analyte stability. Using 400 microl serum or 200mg tissue, the limits of detection for all-trans-retinoic acid were 0.15ng/ml or 0.3ng/g, respectively. The corresponding values for retinol were 1.2ng/ml or 2.4ng/g, respectively. This method was successfully applied to mouse, rat, and human tissue and serum samples.  相似文献   

6.
Analysis of cytoplasmic protein preparations from axolotl tissues revealed the presence of a cytoplasmic retinoic acid-binding protein (CRABP), of approximate molecular weight 17K. This protein was found to be present at various concentrations in skin, muscle, and limb tissue preparations, but not in liver and serum preparations. The distribution and molecular weight of this protein agrees with that reported in mammalian studies. The level of CRABP in cone stage blastemas was found to be significantly higher than that found in nonregenerating whole limb preparations. The level falls gradually, to approach normal, towards the completion of regeneration. Such an increase, at the start of regeneration, was not altered by 4 days pretreatment with 36 mg/liter all-trans-retinoic acid, a sufficient dose to produce pattern effects. Competition experiments confirmed that the all-trans and 13-cis isomers of retinoic acid bind to CRABP with similar high efficiencies, and that the arotinoid, Ro 13-6298, exhibits only a fraction of this binding activity. Retinol, retinol palmitate, and retinol acetate were unable to compete with [3H]retinoic acid for binding to CRABP. The results presented here are discussed in terms of their possible value to understanding pattern specification in the regenerating urodele limb.  相似文献   

7.
Summary The mechanism of action of retinoid in reversing keratinization in hamster trachea is yet unknown. The purpose of this study was to determine if cellular retinoic acid binding protein (CRABP) is present in tracheal epithelium following incubation in serum-free, vitamin A-deficient culture medium for 10 days, and if the effectiveness of a retinoid in reversing keratinization in organ culture is correlated with its ability to compete for CRABP sites. The cytosol prepared from tracheal cultures contained CRABP at a concentration of 2.61 pmoles per mg protein. Of the four retinoids with carboxyl end group selected for the study, two of the biological active retinoids competed for the CRABP sites. However, no correlation was observed between the biological activity of the inactive retinoids and their ability to associate with the CRABP sites. These results indicate that even though the action of retinoid may be mediated by retinoid binding protein, it cannot be used as a sole predicator of retinoid response in hamster trachea. This investigation was supported by Contract N01-CP-31012 and U. S. P. H. Grants CA30512 and CA32428, which were awarded by the Division of Cancer Etiology, National Cancer Institute, DHHS. Editor's Statement Tracheal organ cultures provide a useful model for the study of epithelial differentiation and carcinogenesis. Much attention has been given to the action of retinoids in this process. Mehta et al. demonstrate a lack of correlation between biological activity and specific cytosolic binding of members of this class of compounds, pointing out the need for a more complete biochemical understanding of the mechanism of action and active forms of retinoids in this and other systems in vivo and in vitro. David W. Barnes  相似文献   

8.
Retinoic acid (RA) is known to have a profound effect on the growth and differentiation of human epidermal cells in vivo and in vitro. One of the proteins thought to be involved in mediating the action of RA is the cellular retinoic acid-binding protein (CRABP). We have used PCR technology to generate cDNAs for two distinct CRABPs from human skin and skin-derived cells. One is highly homologous to the CRABP I cDNAs previously cloned from bovine and murine sources. The second shares extensive deduced amino acid homology with CRABP II, a protein recently described in newborn rat and embryonic chick. Although both mRNAs can be detected in neonatal foreskin, CRABP II mRNA is the predominant one in this tissue, as well as in cultured newborn fibroblasts and keratinocytes. Northern blot analysis showed CRABP II mRNA level was only slightly reduced by addition of 10(-6) or 10(-5) M RA to cultures of neonatal foreskin-derived fibroblasts, as was the CRABP I mRNA level in cultured human gut epithelial cells. In contrast, expression of CRABP II mRNA by cultured neonatal keratinocytes was strongly downregulated by RA. We conclude that CRABP II is the predominant CRABP in human skin, at least in the newborn period, and that it is differentially regulated in fibroblasts versus keratinocytes. Our data are consistent with a role for CRABP in regulating the amount of RA delivered to the nucleus.  相似文献   

9.
At least four different proteins that bind retinoids could be present in a vitamin A target tissue like the skin. In order to separate cellular retinoid-binding proteins (CRBP and CRABP) from serum retinol-binding protein (RBP) and albumin, a one-step procedure was devised. The technique is based on slab polyacrylamide gel electrophoresis (PAGE) of the extracted proteins incubated with tritiated retinoids. The procedure was used to study binding proteins in the skin. The results show that epidermal extracts (the epithelial part of the skin) contain no RBP activities whereas dermal extracts (the mesenchymal part of the skin) contain 1.6 +/- 0.81 pmol/mg protein of RBP. This technique further showed higher levels of CRABP in both epidermal (9.05 +/- 1.16 pmol/mg protein) and dermal (1.5 +/- 0.54 pmol/mg protein) extracts than those previously determined by other less specific techniques. On the other hand CRBP levels were found to be lower in the two tissues (epidermis 0.2 +/- 0.1 pmol/mg and dermis 0.12 +/- 0.05 pmol/mg protein). New conditions to measure specifically CRABP with the charcoal/dextran technique could be developed and analyzed by the PAGE technique; a dissociation constant of 13.7 nM was then calculated for epidermal CRABP. This PAGE technique appears to be the most appropriate method for the study of retinoid-binding proteins including RBP in human skin.  相似文献   

10.
Cellular retinoic acid-binding proteins (CRABPs) are carrier proteins thought to play a crucial role in the transport and metabolism of all-trans-retinoic acid (atRA) and its derivatives within the cell. This report describes a novel photoaffinity-based binding assay involving competition between potential ligands of CRABP and [(3)H]atRA or [(3)H]-9-cis-RA for binding to the atRA-binding sites of CRABP I and II. Photoaffinity labeling of purified CRABPs with [(3)H]atRA was light- and concentration-dependent, saturable, and protected by several retinoids in a concentration-dependent manner, indicating that binding occurred in the CRABP atRA-binding site. Structure-function relationship studies demonstrated that oxidative changes to the atRA beta-ionone ring did not affect ligand potency. However, derivatives lacking a terminal carboxyl group and some cis isomers did not bind to CRABPs. These studies also identified two novel ligands for CRABPs: 5,6-epoxy-RA and retinoyl-beta-D-glucuronide (RAG). The labeling of both CRABPs with 9-cis-RA occurred with much lower affinity. Experimental evidence excluded nonspecific binding of RAG to CRABPs and UDP-glucuronosyltransferases, the enzymes responsible for RAG synthesis. These results established that RAG is an effective ligand of CRABPs. Therefore, photoaffinity labeling with [(3)H]atRA can be used to identify new ligands for CRABP and retinoid nuclear receptors and also provide information concerning the identity of amino acid(s) localized in the atRA-binding site of these proteins.  相似文献   

11.
Escherichia coli DNA photolyase was expressed as C-terminal 6x histidine-fused protein. Purification of His-tagged E. coli DNA photolyase was developed using immobilized metal affinity chromatography with Chelating Sepharose Fast Flow. By one-step affinity chromatography, approximate 4.6 mg DNA photolyase was obtained from 400 ml E. coli culture. The purified His-tagged enzyme was combined with two chromophors, FADH and MTHF. Using the oligonucleotide containing cyclobutane pyrimidine dimer as substrate, both reversed-phase high-performance liquid chromatography and size-exclusion high-performance liquid chromatography were developed to measure the enzyme activity. The enzyme was found to be able to repair the cyclobutane pyrimidine dimer with the turnover rate of 2.4 dimers/photolyase molecule/min.  相似文献   

12.
To further our understanding of the action of retinoids on the respecification of pattern in the regenerating axolotl limb we have studied the relative potencies of a range of synthetic and natural retinoids administered locally to the blastema. Alterations in the polar end group of the retinoic acid (RA) molecule to produce esters, the alcohol, or the aldehyde abolish the ability of the molecule to respecify pattern. On the other hand, alterations of the ring or side chain to produce the synthetic retinoids arotinoid and TTNPB considerably increases the potency of the molecule to respecify pattern--TTNPB is at least 100X more potent than retinoic acid. To examine the role of cellular retinoic acid-binding protein (CRABP) in the respecification process we determined the relative binding affinities of these retinoids for CRABP. These data correlated well with the respecification series: retinoids which showed no affinity for CRABP did not respecify pattern and those which did show affinity for CRABP did respecify pattern. Furthermore the most potent retinoid, TTNPB, has a higher affinity for CRABP than RA itself. This suggests that CRABP may be playing an important role in the action of RA on pattern formation in the regenerating limb.  相似文献   

13.
We report the first application of high pressure liquid chromatography (HPLC) in the rapid detection of cellular retinoic acid binding protein (CRABP) and cellular retinol binding protein (CRBP). Cytosols from cultured cells (3T6 and MCF-7) or from tumors (melanoma and ovarian) were labeled with [3H]retinoic acid (30 Ci/mmol) and [3H]retinol (43 Ci/mmol) and analyzed via HPLC employing a 60 cm TSK 3000 sw column. In each case CRABP and CRBP were readily detectable at an elution volume of 22.5 ml, consistent with their molecular weights of 14,600. Identity of the binding protein peaks was established by saturability, specificity, and selective inhibition of binding by an organomercurial. Thus, this method, which resolves CRABP and CRBP in crude mixtures from the majority of cytosolic proteins, should be a valuable tool in the evaluation of vitamin A-binding protein interactions and their biological significance.  相似文献   

14.
Cellular retinoic acid-binding protein (CRABP), a potential mediator of retinoic acid action, enables retinoic acid to bind in a specific manner to nuclei and chromatin isolated from testes of control and vitamin A-deficient rats. The binding of retinoic acid was followed after complexing [3H]retinoic acid with CRABP purified from rat testes. The binding was specific, saturable, and temperature dependent. If CRABP charged with nonlabeled retinoic acid was included in the incubation, binding of radioactivity was diminished, whereas inclusion of free retinoic acid, or the complex of retinol with cellular retinol binding protein (CRBP) or serum retinol binding protein had no effect. Approximately 4.0 X 10(4) specific binding sites for retinoic acid were detected per nucleus from deficient animals. The number of binding sites observed was influenced by vitamin A status. Refeeding vitamin A-deficient rats (4 h) with retinoic acid lowered the amount of detectable binding sites in the nucleus. CRABP itself did not remain bound to these sites, indicating a transfer of retinoic acid from its complex with CRABP to the nuclear sites. Further, CRBP, the putative mediator of retinol action, was found to enable retinol to be bound to testicular nuclei, in an interaction similar to the binding of retinol to liver nuclei described previously.  相似文献   

15.
The binding of 64Cu to the water-soluble form of dopamine beta-monooxygenase from bovine adrenal medulla was studied in reconstitution and exchange experiments using high-performance size-exclusion gel chromatography. The reconstitution experiments provide evidence for a specific binding of four copper atoms/enzyme tetramer using either Cu(I) or Cu(II), but some weaker copper-binding sites were observed in the presence of a large excess of copper. The exchanges of both Cu(I) and Cu(II) in this protein are so rapid that exact half-lives for the exchange reactions can not be obtained by the present method. The results indicate, however, that the half-life for the exchange of the enzyme-bound copper in the holoenzyme with a twofold excess of 64Cu(II) at pH 6.1 was about 1 min, whereas the exchange of Cu(I) measured at similar conditions with ascorbate present, was complete in 1 min. This is by far the most rapid exchange reported for any copper-protein, and the results points to a unique copper-binding site in this enzyme.  相似文献   

16.
Retinoids (vitamin A derivatives) are important for normal embryogenesis and retinoic acid, an acidic derivative of vitamin A, was recently proposed to be an endogenous morphogen. Several retinoids are also potent teratogens. Using an autoradiographic technique, we have identified tissues and cells in early mouse embryos that are able to specifically accumulate a radiolabelled synthetic derivative of retinoic acid. Strong accumulation of radioactivity was seen in several neural crest derivatives and in specific areas of the CNS. Gel filtration analyses of cytosols from embryos that received the radiolabelled retinoid in utero suggested that cellular retinoic acid-binding protein (CRABP) was involved in the accumulation mechanism. Immunohistochemical localization confirmed that cells accumulating retinoids also expressed CRABP. Strong CRABP immunoreactivity was found in neural crest-derived mesenchyme of the craniofacial area, in visceral arches, in dorsal root ganglia and in cells along the gut and the major vessels of the trunk region. In CNS, CRABP expression and retinoid binding was largely restricted to the hindbrain, to a single layer of cells in the roof of the midbrain and to cells in the mantle layer of the neural tube. Our data suggest that cells in the embryo expressing CRABP are target cells for exogenous retinoids as well as endogenous retinoic acid. Retinoic acid may thus play an essential role in normal development of the CNS and of tissues derived from the neural crest. We propose that the teratogenic effects of exogenous retinoids are due to an interference with mechanisms by which endogenous retinoic acid regulates differentiation and pattern formation in these tissues.  相似文献   

17.
Studies were conducted to explore the effects of differences in retinoid nutritional status and of sex on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and of cellular retinoic acid-binding protein (CRABP) in the rat. Sensitive and specific radioimmunoassays were developed and employed to measure the levels of both CRBP and CRABP. Four groups of six male rats each were fed experimental diets that differed greatly in the amount and kind of retinoids provided, but were otherwise identical. These groups were comprised of rats that were normal controls, retinoid-deficient, retinoic acid-fed, and excess retinol-fed. A fifth group of six female rats was fed the control diet. Immunogens identical with rat testis CRBP and CRABP, as assessed by radioimmunoassay displacement curves, were found in every rat tissue examined (21 tissues in males, 18 in females). The highest levels of CRBP were found in the proximal portion of the epididymis, the liver, and kidney. The highest levels of CRABP were found in the seminal vesicles, vas deferens, and skin. A significant (p less than 0.01) inverse relationship was found between CRBP and CRABP levels in the different tissues of the male reproductive tract. In both males and females, CRBP levels were highest in the gonads and proximal portion of the reproductive tract and decreased distally, whereas the opposite was true for CRABP. Retinoid-deficient rats showed reduced tissue levels of CRBP; thus, tissue CRBP levels are influenced by diet and retinoid availability. No differences in tissue CRBP levels were found in the rats fed the control, the retinoic acid, or the excess retinol diets. Female control rats had higher CRBP levels than male controls in 4 of 15 tissues compared (liver, lung, thymus, and fat). In contrast, tissue CRABP levels showed no diet- or sex-dependent differences. Only in one tissue, the skin, were differences observed (lower CRABP in retinoid-deficient and in female rats). Thus, CRABP metabolism and levels appear to be minimally influenced by the amount or kind of retinoid ligand available or by sex.  相似文献   

18.
In a previous study, we reported a novel method for the separation and quantification of a strong negatively charged material, dextran sulfate sodium (DSS), using fluorometric labeling with 2-aminopyridine and size-exclusion high-performance liquid chromatography. In the present study, we developed a method for the separation of pyridylamino-DSS (PA-DSS) using reversed-phase high-performance liquid chromatography (RPLC). In vitro enzymatic degradation of the PA-DSS was carried out using alpha-amylase. In RPLC, depolymerized PA-DSS was eluted on the basis of molecular mass (in the order pentamer, trimer, dimer, and monomer of PA-DSS) and separations were more sharply than in size-exclusion chromatography. The combination of RPLC and size-exclusion chromatography also separated depolymerized PA-DSS as effectively as RPLC alone.  相似文献   

19.
20.
We describe here experiments to examine the role of cellular retinoic-acid-binding protein (CRABP) during the induction of limb duplication in the chick limb bud and regenerating axolotl limb by retinoids. A newly synthesised class of retinoic acid analogues have been used because among them, some have been specifically designed with the property of binding to the retinoic acid receptors, but not to CRABP. We can thus test whether binding to CRABP is an obligatory step during limb respecification. The binding of four of these compounds to chick limb bud and axolotl CRABP was tested in sucrose density gradient assays and then their potencies at inducing limb duplications tested. Two of the four compounds do not bind to limb CRABP and yet are able to induce limb duplications, suggesting that an interaction with CRABP is not an obligatory step in the process. However, the two compounds which do bind to CRABP are more potent than the two which do not, suggesting that an interaction with CRABP may, nevertheless, increase the potency of a retinoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号