首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli.

Methodology/Principal Findings

In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1) more frequent attractive shifts, (2) an increase of their magnitude, and (3) an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation.

Conclusion/Significance

The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These enhanced neuronal responses suggest that the range of neuronal plasticity available to the visual system is broader than anticipated.  相似文献   

2.
Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain.  相似文献   

3.
Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input–output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input–output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.  相似文献   

4.
Adaptation-induced plasticity of orientation tuning in adult visual cortex   总被引:16,自引:0,他引:16  
Dragoi V  Sharma J  Sur M 《Neuron》2000,28(1):287-298
A key emergent property of the primary visual cortex (V1) is the orientation selectivity of its neurons. The extent to which adult visual cortical neurons can exhibit changes in orientation selectivity is unknown. Here we use single-unit recording and intrinsic signal imaging in V1 of adult cats to demonstrate systematic repulsive shifts in orientation preference following short-term exposure (adaptation) to one stimulus orientation. In contrast to the common view of adaptation as a passive process by which responses around the adapting orientation are reduced, we show that changes in orientation tuning also occur due to response increases at orientations away from the adapting stimulus. Adaptation-induced orientation plasticity is thus an active time-dependent process that involves network interactions and includes both response depression and enhancement.  相似文献   

5.
Perceptual anomalies in individuals with autism spectrum disorder (ASD) have been attributed to an imbalance in weighting incoming sensory evidence with prior knowledge when interpreting sensory information. Here, we show that sensory encoding and how it adapts to changing stimulus statistics during feedback also characteristically differs between neurotypical and ASD groups. In a visual orientation estimation task, we extracted the accuracy of sensory encoding from psychophysical data by using an information theoretic measure. Initially, sensory representations in both groups reflected the statistics of visual orientations in natural scenes, but encoding capacity was overall lower in the ASD group. Exposure to an artificial (i.e., uniform) distribution of visual orientations coupled with performance feedback altered the sensory representations of the neurotypical group toward the novel experimental statistics, while also increasing their total encoding capacity. In contrast, neither total encoding capacity nor its allocation significantly changed in the ASD group. Across both groups, the degree of adaptation was correlated with participants’ initial encoding capacity. These findings highlight substantial deficits in sensory encoding—independent from and potentially in addition to deficits in decoding—in individuals with ASD.

It is increasingly recognized that individuals with Autism Spectrum Disorder (ASD) show anomalies in perception, and these have been recently attributed to altered decoding (i.e. interpretation of sensory signals). This study reveals that independent of these changes, individuals with ASD show upstream deficits in sensory encoding (i.e., how samples are drawn from the environment).  相似文献   

6.
Adaptation in sensory and neuronal systems usually leads to reduced responses to persistent or frequently presented stimuli. In contrast to simple fatigue, adapted neurons often retain their ability to encode changes in stimulus intensity and to respond when novel stimuli appear. We investigated how the level of adaptation of a fly visual motion-sensitive neuron affects its responses to discontinuities in the stimulus, i.e. sudden brief changes in one of the stimulus parameters (velocity, contrast, grating orientation and spatial frequency). Although the neuron''s overall response decreased gradually during ongoing motion stimulation, the response transients elicited by stimulus discontinuities were preserved or even enhanced with adaptation. Moreover, the enhanced sensitivity to velocity changes by adaptation was not restricted to a certain velocity range, but was present regardless of whether the neuron was adapted to a baseline velocity below or above its steady-state velocity optimum. Our results suggest that motion adaptation helps motion-sensitive neurons to preserve their sensitivity to novel stimuli even in the presence of strong tonic stimulation, for example during self-motion.  相似文献   

7.
Sawamura H  Orban GA  Vogels R 《Neuron》2006,49(2):307-318
fMRI-based adaptation paradigms (fMR-A) have been used to infer neuronal stimulus selectivities in humans. Inferring neuronal selectivities from fMR-A, however, requires an understanding of the relationship between the stimulus selectivity of neuronal adaptation and responses. We studied this relationship by recording single cells in macaque inferior temporal (IT) cortex, an area that shows fMRI adaptation. Repetition of identical object images reduced the responsiveness of single IT neurons. Presentation of an image to which the neuron was unresponsive did not alter the response to a subsequent image that activated the neuron. Successive presentation of two different images to which the neuron responded similarly produced adaptation, but less so than the repeated presentation of an image. The neuronal adaptation at the single-cell level showed a greater degree of stimulus selectivity than the responses. This complicates the interpretation of fMR-A paradigms when inferring neuronal selectivity.  相似文献   

8.
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple 'race to threshold' readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made.  相似文献   

9.
Neurons in all sensory systems have a remarkable ability to adapt their sensitivity to the statistical structure of the sensory signals to which they are tuned. In the barrel cortex, firing rate adapts to the variance of a whisker stimulus and neuronal sensitivity (gain) adjusts in inverse proportion to the stimulus standard deviation. To determine how adaptation might be transformed across the ascending lemniscal pathway, we measured the responses of single units in the first and last subcortical stages, the trigeminal ganglion (TRG) and ventral posterior medial thalamic nucleus (VPM), to controlled whisker stimulation in urethane-anesthetized rats. We probed adaptation using a filtered white noise stimulus that switched between low- and high-variance epochs. We found that the firing rate of both TRG and VPM neurons adapted to stimulus variance. By fitting the responses of each unit to a Linear-Nonlinear-Poisson model, we tested whether adaptation changed feature selectivity and/or sensitivity. We found that, whereas feature selectivity was unaffected by stimulus variance, units often exhibited a marked change in sensitivity. The extent of these sensitivity changes increased systematically along the pathway from TRG to barrel cortex. However, there was marked variability across units, especially in VPM. In sum, in the whisker system, the adaptation properties of subcortical neurons are surprisingly diverse. The significance of this diversity may be that it contributes to a rich population representation of whisker dynamics.  相似文献   

10.
Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus layer.  相似文献   

11.
Kahnt T  Grueschow M  Speck O  Haynes JD 《Neuron》2011,70(3):549-559
The dominant view that perceptual learning is accompanied by changes in early sensory representations has recently been challenged. Here we tested the idea that perceptual learning can be accounted for by reinforcement learning involving changes in higher decision-making areas. We trained subjects on an orientation discrimination task involving feedback over 4 days, acquiring fMRI data on the first and last day. Behavioral improvements were well explained by a reinforcement learning model in which learning leads to enhanced readout of sensory information, thereby establishing noise-robust representations of decision variables. We find stimulus orientation encoded in early visual and higher cortical regions such as lateral parietal cortex and anterior cingulate cortex (ACC). However, only activity patterns in the ACC tracked changes in decision variables during learning. These results provide strong evidence for perceptual learning-related changes in higher order areas and suggest that perceptual and reward learning are based on a common neurobiological mechanism.  相似文献   

12.
13.
Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture.  相似文献   

14.
Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging), was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes.  相似文献   

15.
Tuning curves are widely used to characterize the responses of sensory neurons to external stimuli, but there is an ongoing debate as to their role in sensory processing. Commonly, it is assumed that a neuron's role is to encode the stimulus at the tuning curve peak, because high firing rates are the neuron's most distinct responses. In contrast, many theoretical and empirical studies have noted that nearby stimuli are most easily discriminated in high-slope regions of the tuning curve. Here, we demonstrate that both intuitions are correct, but that their relative importance depends on the experimental context and the level of variability in the neuronal response. Using three different information-based measures of encoding applied to experimentally measured sensory neurons, we show how the best-encoded stimulus can transition from high-slope to high-firing-rate regions of the tuning curve with increasing noise level. We further show that our results are consistent with recent experimental findings that correlate neuronal sensitivities with perception and behavior. This study illustrates the importance of the noise level in determining the encoding properties of sensory neurons and provides a unified framework for interpreting how the tuning curve and neuronal variability relate to the overall role of the neuron in sensory encoding.  相似文献   

16.
Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters such as adaptation rate and adapted activity affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. We examine this issue using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation. By focusing on how sensory information carried by the response regulator is best utilized by the motor, we identify an operational regime that maximizes drift velocity along chemical concentration gradients for a wide range of environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial.  相似文献   

17.
Kalatsky VA  Stryker MP 《Neuron》2003,38(4):529-545
We present a new technique for acquiring and analyzing intrinsic signal optical images of brain activity, using continuous stimulus presentation and data acquisition. The main idea is to present a temporally periodic stimulus and to analyze the component of the response at the stimulus frequency. Advantages of the new technique include the removal of heart, respiration, and vasomotor artifacts, a dramatic increase in spatial resolution, and a 30-fold or greater reduction in acquisition time. We also present a novel approach to localizing instantaneous neuronal responses using time-reversed stimuli that is widely applicable to brain imaging. To demonstrate the power of the technique, we present high-resolution retinotopic maps of five visual areas in mouse cortex and orientation maps in cat visual cortex.  相似文献   

18.
This study examined certain structural and functional aspects of the olfactory system in regenerated posterior tentacles of the terrestrial snail Achatina fulica. Regeneration of the epithelial sensory pad occurs with accurate size regulation. All five neuronal cell types which are normally revealed by horseradish peroxidase backfilling are also regenerated. The sensory cells attain normal numbers at about 20 weeks postlesion. The organization of neuronal elements within the tentacle is chaotic, however, at early stages of regeneration. Even later, the digitlike extensions of the ganglion, which are characteristic of intact tentacles, fail to appear. The recovery of odor sensitivity was evaluated using a tentacular olfactormeter and a behavioral assay that involved locomotor orientation towards the odor stimulus. Thresholds and concentration-dependent response rates were equivalent for regenerated and intact tentacles, tested in the same animals, at 10 weeks post-lesion.  相似文献   

19.
What humans perceive depends in part on what they have previously experienced. After repeated exposure to one stimulus, adaptation takes place in the form of a negative correlation between the current percept and the last displayed stimuli. Previous work has shown that this negative dependence can extend to a few minutes in the past, but the precise extent and nature of the dependence in vision is still unknown. In two experiments based on orientation judgments, we reveal a positive dependence of a visual percept with stimuli presented remotely in the past, unexpectedly and in contrast to what is known for the recent past. Previous theories of adaptation have postulated that the visual system attempts to calibrate itself relative to an ideal norm or to the recent past. We propose instead that the remote past is used to estimate the world's statistics and that this estimate becomes the reference. According to this new framework, adaptation is predictive: the most likely forthcoming percept is the one that helps the statistics of the most recent percepts match that of the remote past.  相似文献   

20.
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号