首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a diet either high or low in carbohydrates (CHO)on exogenous 13C-labeled glucoseoxidation (200 g) during exercise (ergocycle: 120 min at 64.0 ± 0.5% maximal oxygen uptake) was studied in six subjects. Between 40 and 80 min, exogenous glucose oxidation was significantly higher afterthe diet low in CHO (0.63 ± 0.05 vs. 0.52 ± 0.04 g/min), butthis difference disappeared between 80 and 120 min (0.71 ± 0.03 vs.0.69 ± 0.04 g/min). The oxidation rate of plasma glucose, computedfrom the volume of13CO2produced the13C-to-12Cratio in plasma glucose at 80 min, and of glucose released from theliver, computed from the difference between plasma glucose andexogenous glucose oxidation, was higher after the diet low in CHO (1.68 ± 0.26 vs. 1.41 ± 0.17 and 1.02 ± 0.20 vs. 0.81 ± 0.14 g/min, respectively). In contrast the oxidation rate ofglucose plus lactate from muscle glycogen (computed from the difference between total CHO oxidation and plasma glucose oxidation) was lower(0.31 ± 0.35 vs. 1.59 ± 0.20 g/min). After a diet low in CHO,the oxidation of exogenous glucose and of glucose released from theliver is increased and partly compensates for the reduction in muscleglycogen availability and oxidation.

  相似文献   

2.
The purpose of this study was to compare the oxidation of[13C]glucose (100 g)ingested at rest or during exercise in six trained (TS) and sixsedentary (SS) male subjects. The oxidation of plasma glucose was alsocomputed from the volume of13CO2and13C/12Cin plasma glucose to compute the oxidation rate of glucose released from the liver and from glycogen stores in periphery (mainly muscle glycogen stores during exercise). At rest, oxidative disposal of bothexogenous (8.3 ± 0.3 vs. 6.6 ± 0.8 g/h) and liver glucose (4.4 ± 0.5 vs. 2.6 ± 0.4 g/h) was higher in TS than in SS.This could contribute to the better glucose tolerance observed at rest in TS. During exercise, for the same absolute workload [140 ± 5 W: TS = 47 ± 2.5; SS = 68 ± 3 %maximal oxygen uptake(O2 max)], [13C]glucose oxidationwas higher in TS than in SS (39.0 ± 2.6 vs. 33.6 ± 1.2 g/h),whereas both liver glucose (16.8 ± 2.4 vs. 24.0 ± 1.8 g/h) and muscle glycogen oxidation (36.0 ± 3.0 vs. 51.0 ± 5.4 g/h) were lower. For the same relative workload (68 ± 3% O2 max:TS = 3.13 ± 0.96; SS = 2.34 ± 0.60 lO2/min), exogenous glucose(44.4 ± 1.8 vs. 33.6 ± 1.2 g/h) and muscle glycogen oxidation (73.8 ± 7.2 vs. 51.0 ± 5.4 g/h) were higher in TS. However,despite a higher energy expenditure in TS, liver glucose oxidation was similar in both groups (22.2 ± 3.0 vs. 24.0 ± 1.8 g/h). Thus exogenous glucose oxidation was selectively favored in TSduring exercise, reducing both liver glucose and muscle glycogen oxidation.

  相似文献   

3.
Jeukendrup, Asker E., Lars B. Borghouts, Wim H. M. Saris,and Anton J. M. Wagenmakers. Reduced oxidation rates of ingested glucose during prolonged exercise with low endogenous CHO availability. J. Appl. Physiol. 81(5):1952-1957, 1996.This study investigated the effect of endogenouscarbohydrate (CHO) availability on oxidation rates of ingested glucoseduring moderate-intensity exercise. Seven well-trained cyclistsperformed two trials of 120 min of cycling exercise in random order at57% maximal O2 consumption. Preexercise glycogen concentrations were manipulated byglycogen-lowering exercise in combination with CHO restriction[low-glycogen (LG) trial] or CHO loading[moderate-to-high-glycogen (HG) trial]. In the LG and HGtrials, subjects ingested 4 ml/kg body wt of an 8% corn-derivedglucose solution of high natural13C abundance at the start,followed by boluses of 2 ml/kg every 15 min. The third trial, in whichpotato-derived glucose was ingested, served as a control test forbackground correction. Exogenous glucose oxidation rates werecalculated from the 13C enrichmentof the ingested glucose and of the breathCO2. Total CHO oxidation was lowerin the LG trial than in the HG trial during 60-120 min of exercise[84 ± 7 (SE) vs. 116 ± 8 g;P < 0.05]. Exogenous CHOoxidation in this period was 28% lower in the LG trial compared withthe HG trial. Maximal exogenous oxidation rates were also lower(P < 0.05) in the LG trial (0.64 ± 0.05 g/min) than in the HG trial (0.88 ± 0.04 g/min). Thisdecreased utilization of exogenous glucose was accompanied by increased plasma free fatty acid levels (2-3 times higher) and lower insulin concentrations. It is concluded that glycogen-lowering exercise, performed the evening before an exercise bout, in combination with CHOrestriction leads to a reduction of the oxidation rate of ingestedglucose during moderate-intensity exercise.

  相似文献   

4.
Jeukendrup, A. E., M. Mensink, W. H. M. Saris, and A. J. M. Wagenmakers. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J. Appl.Physiol. 82(3): 835-840, 1997.To investigate theeffect of training status on the fuel mixture used during exercise withglucose ingestion, seven endurance-trained cyclists (Tr; maximumO2 uptake 67 ± 2.3 ml · kg1 · min1)and eight untrained subjects (UTr; 48 ± 2 ml · kg1 · min1)were studied during 120 min of exercise at ~60% maximumO2 uptake. At the onset of exercise, 8 ml · kg1 · min1of an 8% naturally enriched[13C]glucose solutionwas ingested and 2 ml/kg every 15 min thereafter. Energy expenditurewas higher in Tr subjects compared with UTr subjects (3,404 vs. 2,630 kJ; P < 0.01). During the secondhour, fat oxidation was higher in Tr subjects (37 ± 2 g) comparedwith UTr subjects (23 ± 1 g), whereas carbohydrateoxidation was similar (116 ± 8 g in Tr subjects vs. 114 ± 4 g in UTr subjects). No differences were observed in exogenousglucose oxidation (50 ± 2 g in Tr subjects and 45 ± 3 g in UTr subjects, respectively). Peak exogenous glucose oxidationrates were similar in the two groups (0.95 ± 0.07 g/min in Trsubjects and 0.96 ± 0.03 g/min in UTr subjects). It is concluded that the higher energy expenditure in Tr subjects during exercise atthe same relative exercise intensity is entirely met by a higher rateof fat oxidation without changes in the rates of exogenous andendogenous carbohydrates.

  相似文献   

5.
Mathew, Rajamma, Elizabeth S. Gloster, T. Sundararajan, Carl I. Thompson, Guillermo A. Zeballos, andMichael H. Gewitz. Role of inhibition of nitric oxide productionin monocrotaline-induced pulmonary hypertension. J. Appl. Physiol. 82(5): 1493-1498, 1997.Monocrotaline (MCT)-induced pulmonary hypertension (PH) isassociated with impaired endothelium-dependent nitric oxide(NO)-mediated relaxation. To examine the role of NO in PH,Sprague-Dawley rats were given a single subcutaneous injection ofnormal saline [control (C)], 80 mg/kg MCT, or the same doseof MCT and a continuous subcutaneous infusion of 2 mg · kg1 · day1of molsidomine, a NO prodrug (MCT+MD). Two weeks later, plasma NO3 levels, pulmonary arterialpressure (Ppa), ratio of right-to-left ventricular weights (RV/LV) toassess right ventricular hypertrophy, and pulmonary histology wereevaluated. The plasma NO3 level inthe MCT group was reduced to 9.2 ± 1.5 µM(n = 12) vs. C level of 17.7 ± 1.8 µM (n = 8; P < 0.02). In the MCT+MD group,plasma NO3 level was 12.3 ± 2.0 µM (n = 8). Ppa and RV/LV in theMCT group were increased compared with C [Ppa, 34 ± 3.4 mmHg(n = 6) vs. 19 ± 0.8 mmHg(n = 8) and 0.41 ± 0.01 (n = 9) vs. 0.25 ± 0.008 (n = 8), respectively;P < 0.001]. In the MCT+MDgroup, Ppa and RV/LV were not different when compared with C [19 ± 0.5 mmHg (n = 5) and 0.27 ± 0.01 (n = 9), respectively;P < 0.001 vs. MCT]. Medial wall thickness of lung vessels in the MCT group was increased comparedwith C [31 ± 1.5% (n = 9)vs. 13 ± 0.66% (n = 9);P < 0.001], and MDpartially prevented MCT-induced pulmonary vascular remodeling [22 ± 1.2% (n = 11);P < 0.001 vs. MCT and C].These results indicate that a defect in the availability of bioactive NO may play an important role in the pathogenesis of MCT-induced PH.

  相似文献   

6.
We used13C-labeled substrates and nuclearmagnetic resonance spectroscopy to examine carbohydrate metabolism invascular smooth muscle of freshly isolated pig cerebral microvessels(PCMV). PCMV utilized[2-13C]glucose mainlyfor glycolysis, producing[2-13C]lactate.Simultaneously, PCMV utilized the glycolytic intermediate [1-13C]fructose1,6-bisphosphate (FBP) mainly for gluconeogenesis, producing[1-13C]glucose withonly minor[3-13C]lactateproduction. The dissimilarity in metabolism of[2-13C]FBP derivedfrom [2-13C]glucosebreakdown and metabolism of exogenous[1-13C]FBPdemonstrates that carbohydrate metabolism is compartmented in PCMV.Because glycolytic enzymes interact with microtubules, we disruptedmicrotubules with vinblastine. Vinblastine treatment significantlydecreased[2-13C]lactate peakintensity (87.8 ± 3.7% of control). The microtubule-stabilizing agent taxol also reduced[2-13C]lactate peakintensity (90.0 ± 2.4% of control). Treatment with both agentsfurther decreased[2-13C]lactateproduction (73.3 ± 4.0% of control). Neither vinblastine, taxol,or the combined drugs affected[1-13C]glucose peakintensity (gluconeogenesis) or disrupted the compartmentation ofcarbohydrate metabolism. The similar effects of taxol and vinblastine, drugs that have opposite effects on microtubule assembly, suggest thatthey produce their effects on glycolytic rate by competing withglycolytic enzymes for binding, not by affecting the overall assemblystate of the microtubule network. Glycolysis, but not gluconeogenesis,may be regulated in part by glycolytic enzyme-microtubule interactions.

  相似文献   

7.
Effect of heat stress on glucose kinetics during exercise   总被引:2,自引:0,他引:2  
Hargreaves, Mark, Damien Angus, Kirsten Howlett, Nelly MarmyConus, and Mark Febbraio. Effect of heat stress on glucose kinetics during exercise. J. Appl.Physiol. 81(4): 1594-1597, 1996.To identify themechanism underlying the exaggerated hyperglycemia during exercise inthe heat, six trained men were studied during 40 min of cyclingexercise at a workload requiring 65% peak pulmonary oxygen uptake(O2 peak) on twooccasions at least 1 wk apart. On one occasion, the ambient temperaturewas 20°C [control (Con)], whereas on the other, it was40°C [high temperature (HT)]. Rates ofglucose appearance and disappearance were measured by using a primedcontinuous infusion of[6,6-2H]glucose. Nodifferences in oxygen uptake during exercise were observed betweentrials. After 40 min of exercise, heart rate, rectal temperature,respiratory exchange ratio, and plasma lactate were all higher in HTcompared with Con (P < 0.05). Plasmaglucose levels were similar at rest (Con, 4.54 ± 0.19 mmol/l; HT,4.81 ± 0.19 mmol/l) but increased to a greater extent duringexercise in HT (6.96 ± 0.16) compared with Con (5.45 ± 0.18;P < 0.05). This was the result of ahigher glucose rate of appearance in HT during the last 30 min ofexercise. In contrast, the glucose rate of disappearance and metabolicclearance rate were not different at any time point during exercise.Plasma catecholamines were higher after 10 and 40 min of exercise in HTcompared with Con (P < 0.05),whereas plasma glucagon, cortisol, and growth hormone were higher in HTafter 40 min. These results indicate that the hyperglycemia observedduring exercise in the heat is caused by an increase in liver glucoseoutput without any change in whole body glucoseutilization.

  相似文献   

8.
Van Den Bergh, Adrianus J., Sibrand Houtman, ArendHeerschap, Nancy J. Rehrer, Hendrikus J. Van Den Boogert, BerendOeseburg, and Maria T. E. Hopman. Muscle glycogen recovery afterexercise during glucose and fructose intake monitored by13C-NMR. J. Appl.Physiol. 81(4): 1495-1500, 1996.The purpose of this study was to examine muscle glycogen recovery with glucose feeding(GF) compared with fructose feeding (FF) during the first 8 h afterpartial glycogen depletion by using13C-nuclear magneticresonance (NMR) on a clinical 1.5-T NMR system. After measurement of the glycogen concentration of the vastus lateralis (VL) muscle in seven male subjects, glycogen stores of the VLwere depleted by bicycle exercise. During 8 h after completion ofexercise, subjects were orally given either GF or FF while the glycogencontent of the VL was monitored by13C-NMR spectroscopy every secondhour. The muscular glycogen concentration was expressed as a percentageof the glycogen concentration measured before exercise. The glycogenrecovery rate during GF (4.2 ± 0.2%/h) was significantly higher(P < 0.05) compared withvalues during FF (2.2 ± 0.3%/h). This study shows that1) muscle glycogen levels areperceptible by 13C-NMRspectroscopy at 1.5 T and 2) theglycogen restoration rate is higher after GF compared with after FF.

  相似文献   

9.
The aim of this study wasto establish the experimental paradigm of fasting, followed byrefeeding, to investigate individual differences in nutrientpartitioning. Eight nonobese men were fed a normal meal (25% ofdaily energy requirements) on two occasions, after an overnight (13-h)fast and after a prolonged (72-h) fast. During the entire fastingperiod, subjects were resident in a whole room indirect calorimeter,and blood samples were drawn periodically. Because no other food wasconsumed over the 12 h after either meal, negative energy balancewas observed after the overnight and prolonged fast. Postprandialcarbohydrate oxidation was significantly reduced after the 72- vs. 13-hfast (P < 0.0001), whereas fat oxidation wassignificantly increased (P < 0.0001). Interestingly,carbohydrate balance was positive after the prolonged fast but negativeafter the overnight fast (24 ± 17 vs. 57 ± 16 g/12 h,respectively; P < 0.001), whereas fat balance wasnegative under both conditions (78 ± 7 vs. 47 ± 8 g/12h, respectively; P < 0.002). With 72 h offasting, the glucose and insulin excursions in response to the mixedmeal were significantly greater compared with the 13-h fast(P < 0.001). In conclusion, prolonged fasting resulted in a significant decrease in carbohydrate oxidation and anincrease in fat oxidation, after a normal mixed meal, in healthy men.This was associated with a significant decrease in glucose tolerance.Because circulating free fatty acids were greatly elevated at all timesafter the prolonged fast, these may be mediating some of the changes inpostprandial metabolism.

  相似文献   

10.
Pickar, Joel G., John P. Mattson, Steve Lloyd, and TimothyI. Musch. Decreased[3H]ouabainbinding sites in skeletal muscle of rats with chronic heart failure.J. Appl. Physiol. 83(1): 323-329, 1997.Abnormalities intrinsic to skeletal muscle are thought tocontribute to decrements in exercise capacity found in individualswith chronic heart failure (CHF).Na+-K+-adenosinetriphosphatase(the Na+ pump) is essential formaintaining muscle excitability and contractility. Therefore, weinvestigated the possibility that the number and affinity ofNa+ pumps in locomotor muscles ofrats with CHF are decreased. Myocardial infarction (MI) was induced in8 rats, and a sham operation was performed in 12 rats. The degree ofCHF was assessed ~180 days after surgery. Soleus and plantarismuscles were harvested, and Na+pumps were quantified by using a[3H]ouabain bindingassay. At the time of muscle harvest, MI and sham-operated rats weresimilar in age (458 ± 54 vs. 447 ± 34 days old, respectively).Compared with their sham-operated counterparts, MI rats had asignificant amount of heart failure, right ventricular-to-body weightratio was greater (48%), and the presence of pulmonary congestion wassuggested by an elevated lung-to-body weight ratio (29%). Leftventricular end-diastolic pressure was significantly increased in theMI rats (11 ± 1 mmHg) compared with the sham-operated controls (1 ± 1 mmHg). In addition, mean arterial blood pressure was lower inthe MI rats compared with their control counterparts. [3H]ouabain bindingsites were reduced 18% in soleus muscle (136 ± 12 vs. 175 ± 13 pmol/g wet wt, MI vs. sham, respectively) and 22% in plantaris muscle(119 ± 12 vs. 147 ± 8 pmol/g wet wt, MI vs. sham,respectively). The affinity of these[3H]ouabain bindingsites was similar for the two groups. The relationship between thereduction in Na+ pump number andthe reduced exercise capacity in individuals with CHF remains to bedetermined.

  相似文献   

11.
Madsen, Klavs, Dave A. MacLean, Bente Kiens, and DirkChristensen. Effects of glucose, glucose plus branched-chain aminoacids, or placebo on bike performance over 100 km. J. Appl. Physiol. 81(6): 2644-2650, 1996.This studywas undertaken to determine the effects of ingesting either glucose(trial G) or glucose plusbranched-chain amino acids (BCAA; trialB), compared with placebo (trialP), during prolonged exercise. Nine well-trained cyclists with a maximal oxygen uptake of 63.1 ± 1.5 mlO2 · min1 · kg1performed three laboratory trials consisting of 100 km of cycling separated by 7 days between each trial. During these trials, the subjects were encouraged to complete the 100 km as fast as possible ontheir own bicycles connected to a magnetic brake. No differences inperformance times were observed between the three trials (160.1 ± 4.1, 157.2 ± 4.5, and 159.8 ± 3.7 min, respectively). Intrial B, plasma BCAA levels increased from339 ± 28 µM at rest to 1,026 ± 62 µM after exercise(P < 0.01). Plasma ammoniaconcentrations increased during the entire exercise period for allthree trials and were significantly higher intrial B compared withtrials G andP (P < 0.05). The respiratory exchange ratio was similar in the threetrials during the first 90 min of exercise; thereafter, it tended todrop more in trial P than intrials G andB. These data suggest that neitherglucose nor glucose plus BCAA ingestion during 100 km of cyclingenhance performance in well-trained cyclists.

  相似文献   

12.
Training-induced alterations of glucose flux in men   总被引:5,自引:0,他引:5  
Friedlander, Anne L., Gretchen A. Casazza, Michael A. Horning, Melvin J. Huie, and George A. Brooks. Training-induced alterations of glucose flux in men. J. Appl.Physiol. 82(4): 1360-1369, 1997.We examined thehypothesis that glucose flux was directly related to relative exerciseintensity both before and after a 10-wk cycle ergometer trainingprogram in 19 healthy male subjects. Two pretraining trials [45and 65% of peak O2 consumption(O2 peak)] andtwo posttraining trials (same absolute and relative intensities as 65%pretraining) were performed for 90 min of rest and 1 h of cyclingexercise. After training, subjects increasedO2 peak by9.4 ± 1.4%. Pretraining, the intensity effect on glucose kinetics was evident with rates of appearance(Ra; 5.84 ± 0.23 vs. 4.73 ± 0.19 mg · kg1 · min1),disappearance (Rd; 5.78 ± 0.19 vs. 4.73 ± 0.19 mg · kg1 · min1),oxidation (Rox; 5.36 ± 0.15 vs. 3.41 ± 0.23 mg · kg1 · min1),and metabolic clearance (7.03 ± 0.56 vs. 5.20 ± 0.28 ml · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% than the 45%O2 peak trial. WhenRd was expressed as a percentage of total energy expended per minute(Rd E), there was nodifference between the 45 and 65% intensities. Training did reduceRa (4.63 ± 0.25),Rd (4.65 ± 0.24),Rox (3.77 ± 0.43), andRd E (15.30 ± 0.40 to12.85 ± 0.81) when subjects were tested at the same absolute workload (P  0.05). However, whenthey were tested at the same relative workload,Ra,Rd, andRd E were not different,although Rox was lowerposttraining (5.36 ± 0.15 vs. 4.41 ± 0.42, P  0.05). These results show1) glucose use is directly relatedto exercise intensity; 2) trainingdecreases glucose flux for a given power output;3) when expressed as relativeexercise intensity, training does not affect the magnitude of bloodglucose use during exercise; 4)training alters the pathways of glucose disposal.

  相似文献   

13.
Fritsch-Yelle, Janice M., Peggy A. Whitson, Roberta L. Bondar, and Troy E. Brown. Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight.J. Appl. Physiol. 81(5):2134-2141, 1996.Postflight orthostatic intolerance isexperienced by virtually all astronauts but differs greatly in degreeof severity. We studied cardiovascular responses to upright posture in40 astronauts before and after spaceflights lasting up to 16 days. Weseparated individuals according to their ability to remain standingwithout assistance for 10 min on landing day. Astronauts who could notremain standing on landing day had significantly smaller increases inplasma norepinephrine levels with standing than did those who couldremain standing (105 ± 41 vs. 340 ± 62 pg/ml;P = 0.05). In addition, they hadsignificantly lower standing peripheral vascular resistance (23 ± 3 vs. 34 ± 3 mmHg · l1 · min;P = 0.02) and greater decreases insystolic (28 ± 4 vs. 11 ± 3 mmHg;P = 0.002) and diastolic (14 ± 7 vs. 3 ± 2 mmHg; P = 0.0003) pressures. The presyncopal group also hadsignificantly lower supine (16 ± 1 vs. 21 ± 2 mmHg · l1 · min;P = 0.04) and standing (23 ± 2 vs.32 ± 2 mmHg · l1 · min;P = 0.038) vascular resistance, supine(66 ± 2 vs. 73 ± 2 mmHg; P = 0.008) and standing (69 ± 4 vs. 77 ± 2 mmHg;P = 0.007) diastolic pressure, andsupine (109 ± 3 vs. 114 ± 2 mmHg; P = 0.05) and standing (99 ± 4 vs. 108 ± 3 mmHg; P = 0.006) systolic pressures before flight. This is the first study toclearly document these differences among presyncopal and nonpresyncopalastronauts after spaceflight and also offer the possibility ofpreflight prediction of postflight susceptibility. These resultsclearly point to hypoadrenergic responsiveness, possibly centrallymediated, as a contributing factor in postflight orthostaticintolerance. They may provide insights into autonomic dysfunction inEarthbound patients.

  相似文献   

14.
The purpose of this study was to determinewhether the increase in insulin sensitivity of skeletal muscle glucosetransport induced by a single bout of exercise is mediated by enhancedtranslocation of the GLUT-4 glucose transporter to the cell surface.The rate of3-O-[3H]methyl-D-glucosetransport stimulated by a submaximally effective concentration ofinsulin (30 µU/ml) was approximately twofold greater in the musclesstudied 3.5 h after exercise than in those of the sedentary controls(0.89 ± 0.10 vs. 0.43 ± 0.05 µmol · ml1 · 10 min1; means ± SE forn = 6/group). GLUT-4 translocation wasassessed by using theATB-[2-3H]BMPAexofacial photolabeling technique. Prior exercise resulted in greatercell surface GLUT-4 labeling in response to submaximal insulintreatment (5.36 ± 0.45 dpm × 103/g in exercised vs. 3.00 ± 0.38 dpm × 103/g insedentary group; n = 10/group) thatclosely mirrored the increase in glucose transport activity. The signalgenerated by the insulin receptor, as reflected in the extent ofinsulin receptor substrate-1 tyrosine phosphorylation, was unchangedafter the exercise. We conclude that the increase in muscle insulinsensitivity of glucose transport after exercise is due to translocationof more GLUT-4 to the cell surface and that this effect is not due topotentiation of insulin-stimulated tyrosine phosphorylation.

  相似文献   

15.
Febbraio, M. A., D. L. Lambert, R. L. Starkie, J. Proietto,and M. Hargreaves. Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J. Appl.Physiol. 84(2): 465-470, 1998.To test thehypothesis that an elevation in circulating epinephrine increasesintramuscular glycogen utilization, six endurance-trained men performedtwo 40-min cycling trials at 71 ± 2% of peak oxygen uptake in20-22°C conditions. On the first occasion, subjects wereinfused with saline throughout exercise (Con). One week later, afterdetermination of plasma epinephrine levels in Con, subjects performedthe second trial (Epi) with an epinephrine infusion, which resulted ina twofold higher (P < 0.01) plasmaepinephrine concentration in Epi compared with Con. Although oxygenuptake was not different when the two trials were compared, respiratoryexchange ratio was higher throughout exercise in Epi compared with Con(0.93 ± 0.01 vs. 0.89 ± 0.01; P < 0.05). Muscle glycogenconcentration was not different when the trials were comparedpreexercise, but the postexercise value was lower(P < 0.01) in Epi compared with Con.Thus net muscle glycogen utilization was greater during exercise withepinephrine infusion (224 ± 37 vs. 303 ± 30 mmol/kg for Con andEpi, respectively; P < 0.01). Inaddition, both muscle and plasma lactate and plasma glucoseconcentrations were higher (P < 0.05) in Epi compared with Con. These data indicate that intramuscularglycogen utilization, glycolysis, and carbohydrate oxidation areaugmented by elevated epinephrine during submaximal exercise in trainedmen.

  相似文献   

16.
The present study compared the microdialysis ethanoloutflow-inflow technique for estimating blood flow (BF) in skeletalmuscle of humans with measurements by Doppler ultrasound of femoralartery inflow to the limb(BFFA). The microdialysis probeswere inserted in the vastus lateralis muscle and perfused with a Ringeracetate solution containing ethanol,[2-3H]adenosine (Ado),andD-[14C(U)]glucose.BFFA at rest increased from0.16 ± 0.02 to 1.80 ± 0.26 and 4.86 ± 0.53 l/minwith femoral artery infusion of Ado (AdoFA,i) at 125 and 1,000 µg · min1 · l1thigh volume (low dose and high dose, respectively;P < 0.05) and to 3.79 ± 0.37 and6.13 ± 0.65 l/min during one-legged, dynamic, thigh muscle exercisewithout and with high AdoFA,i,respectively (P < 0.05). The ethanoloutflow-to-inflow ratio (38.3 ± 2.3%) and the probe recoveries(PR) for [2-3H]Ado(35.4 ± 1.6%) and forD-[14C(U)]glucose(15.9 ± 1.1%) did not change withAdoFA,i at rest (P = not significant). During exercisewithout and with AdoFA,i, theethanol outflow-to-inflow ratio decreased(P < 0.05) to a similar level of17.5 ± 3.4 and 20.6 ± 3.2%, respectively(P = not significant), respectively,while the PR increased (P < 0.05) toa similar level (P = not significant)of 55.8 ± 2.8 and 61.2 ± 2.5% for[2-3H]Ado and to 42.8 ± 3.9 and 45.2 ± 5.1% forD-[14C(U)]glucose.Whereas the ethanol outflow-to-inflow ratio and PR correlated inverselyand positively, respectively, to the changes in BF during muscularcontractions, neither of the ratio nor PR correlated tothe AdoFA,i-induced BF increase.Thus the ethanol outflow-to-inflow ratio does not represent skeletalmuscle BF but rather contraction-induced changes in molecular transport in the interstitium or over the microdialysis membrane.

  相似文献   

17.
Isnard, Richard, Philippe Lechat, Hanna Kalotka, HafidaChikr, Serge Fitoussi, Joseph Salloum, Jean-Louis Golmard, Daniel Thomas, and Michel Komajda. Muscular blood flow response to submaximal leg exercise in normal subjects and in patients with heartfailure. J. Appl. Physiol. 81(6):2571-2579, 1996.Blood flow to working skeletal muscle is usuallyreduced during exercise in patients with congestive heart failure. Anintrinsic impairment of skeletal muscle vasodilatory capacity has beensuspected as a mechanism of this muscle underperfusion during maximalexercise, but its role during submaximal exercise remains unclear.Therefore, we studied by transcutaneous Doppler ultrasonography thearterial blood flow in the common femoral artery at rest and during asubmaximal bicycle exercise in 12 normal subjects and in 30 patientswith heart failure. Leg blood flow was lower in patientsthan in control subjects at rest [0.29 ± 0.14 (SD) vs. 0.45 ± 0.14 l/min, P < 0.01], at absolute powers and at the same relative power (2.17 ± 1.06 vs. 4.39 ± 1.4 l/min, P < 0.001). Because mean arterial pressure was maintained, leg vascularresistance was higher in patients than in control subjects at rest (407 ± 187 vs. 247 ± 71 mmHg · l1 · min,P < 0.01) and at thesame relative power (73 ± 49 vs. 31 ± 13 mmHg · l1 · min,P < 0.01) but not at absolutepowers. Although the magnitude of increase in leg blood flow correctedfor power was similar in both groups (31 ± 10 vs. 34 ± 10 ml · min1 · W1),the magnitude of decrease of leg vascular resistance corrected forpower was higher in patients than in control subjects (5.9 ± 3.3 vs. 1.9 ± 0.94 mmHg · l1 · min · W1,P < 0.001). These results suggestthat the ability of skeletal muscle vascular resistance to decrease isnot impaired and that intrinsic vascular abnormalities do not limitvasodilator response to submaximal exercise in patients with heartfailure.

  相似文献   

18.
To evaluate the effects of contractions on thekinetics of uptake and oxidation of palmitate in a physiological musclepreparation, rat hindquarters were perfused with glucose (6 mmol/l),albumin-bound [1-14C]palmitate, andvarying amounts of albumin-bound palmitate (200-2,200 µmol/l) atrest and during muscle contractions. When plotted against the unboundpalmitate concentration, palmitate uptake and oxidation displayedsimple Michaelis-Menten kinetics with estimated maximal velocity(Vmax)and Michaelis-Menten constant(Km) values of42.8 ± 3.8 (SE)nmol · min1 · g1and 13.4 ± 3.4 nmol/l for palmitate uptake and 3.8 ± 0.4 nmol · min1 · g1and 8.1 ± 2.9 nmol/l for palmitate oxidation, respectively, at rest.Whereas muscle contractions increased theVmaxfor both palmitate uptake and oxidation to 91.6 ± 10.1 and 16.5 ± 2.3 nmol · min1 · g1,respectively, theKm remainedunchanged.Vmaxand Km estimates obtained from Hanes-Woolf plots (substrate concentration/velocity vs.substrate concentration) were not significantly different. In theresting perfused hindquarter, an increase in palmitate delivery from31.9 ± 0.9 to 48.7 ± 1.2 µmol · g1 · h1by increasing perfusate flow was associated with a decrease in thefractional uptake of palmitate so that the rates of uptake andoxidation of palmitate remained unchanged. It is concluded that therates of uptake and oxidation of long-chain fatty acids (LCFA) saturatewith an increase in the concentration of unbound LCFA in perfusedskeletal muscle and that muscle contractions, but not an increase inplasma flow, increase theVmaxfor LCFA uptake and oxidation. The data are consistent with the notion that uptake of LCFA in muscle may be mediated in part by a transport system.

  相似文献   

19.
Intramuscular fatty acid metabolism evaluated with stable isotopic tracers   总被引:1,自引:0,他引:1  
We evaluated the applicability of stableisotopic tracers to the study of intramuscular fatty acid metabolism byinfusing both[U-13C]palmitateand [1-13C]oleateintravenously for 4 h into fasted conscious rats. Skeletal muscles weresequentially biopsied, and the concentration and 13C enrichment of fatty acids weremeasured by gas chromatography/combustion/isotope ratio massspectrometry. Throughout the study, the13C enrichment of plasma palmitateand oleate remained substantially greater than intramuscularnonesterified palmitate and oleate enrichment, which in turn wasgreater than intramuscular triglyceride palmitate and oleateenrichment. Fractional synthesis rates of intramuscular triglyceridesin gastrocnemius and soleus were 0.267 ± 0.075 and 0.100 ± 0.030/h (P = 0.04), respectively, asdetermined by using[U-13C]palmitate, andwere 0.278 ± 0.049 and 0.075 ± 0.013/h(P = 0.02), respectively, by using[1-13C]oleate. Weconclude that plasma free fatty acids are a source for intramusculartriglycerides and nonesterified fatty acids; the latter are likely thesynthetic precursors of the former. Uniformly and singly labeled[13C]fatty acidtracers will provide an important tool to study intramuscular fattyacid and triglyceride metabolism.

  相似文献   

20.
Bertocci, Loren A., John G. Jones, Craig R. Malloy, RonaldG. Victor, and Gail D. Thomas. Oxidation of lactateand acetate in rat skeletal muscle: analysis by13C-nuclear magnetic resonancespectroscopy. J. Appl. Physiol. 83(1): 32-39, 1997.The balance between carbohydrate and fatty acidutilization in skeletal muscle previously has been studied in vivo byusing a variety of methods such as arteriovenous concentrationdifferences and radioactive isotope tracer techniques. However, thesemethodologies provide only indirect estimates of substrate oxidation.We used 13C-nuclear magneticresonance (NMR) spectroscopy and non-steady-state isotopomer analysisto directly quantify the relative oxidation of two competing exogenoussubstrates in rat skeletal muscles. We infused[1,2-13C]acetate and[3-13C]lactateintravenously in anesthetized rats during the final 30 min of 35 (n = 10) or 95 (n = 10) min of intense, unilateral, rhythmic hindlimb contractions.13C-NMR spectroscopy andisotopomer analysis were performed on extracts of gastrocnemius andsoleus muscles from both the contracting and contralateralresting hindlimbs. We found that1)[13C]lactate and[13C]acetate were taken up and oxidized by both restingand contracting skeletal muscles; and2) high-intensity musclecontractions altered the pattern of substrate utilization such that therelative oxidation of acetate decreased while that of lactate remainedunchanged or increased. Based on these findings, we propose that13C-NMR spectroscopy incombination with isotopomer analysis can be used to study the generaldynamics of substrate competition between carbohydrates and fats in ratskeletal muscle.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号