首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The operating and storage stability of a receptor element of an amperometric biosensor based on the Pseudomonas rathonis strain T capable of degrading surfactants was tested. Microbial cells were immobilized by incorporation in gels (agar, agarose, and calcium-alginate), polyvinyl alcohol membrane, adhesion to the chromatographic paper GF/A, or by the cross-linking induced by glutaric aldehyde. Incorporation of microbial cells in agar gel provides the long-standing conservation of their activity and viability during measurements of high concentrations of surfactants and allows the receptory element of the biosensor to be rapidly recovered after the measurements.  相似文献   

2.
The dependence of the sensitivity of a microbial biosensor of anionic surfactants (AS) on the growth phase ofPseudomonas rathonis T, a strain capable of degrading surfactants, was studied. Correlations were found between the optimum values of temperature and pH for microbial growth, substrate utilization, and functional performance of the microbial biosensor. These results allow the process of AS detection to be optimized.  相似文献   

3.
The dependence of the sensitivity of a microbial biosensor of anionic surfactants (AS) on the growth phase of Pseudomonas rathonis T, a strain capable of degrading surfactants, was studied. Correlations were found between the optimum values of temperature and pH of microbial growth, substrate utilization, and functional performance of the microbial biosensor. These results allow the process of AS detection to be optimized.  相似文献   

4.
5.
The immobilization of anti-Salmonella antibodies by two methods were studied and evaluated for their potential use in a piezoelectric biosensor. The optimum temperature-time combinations for the highest immobilization yields were determined for both methods. Protein A binding was found to be 67.4+/-3.8% on the gold surface which then allowed an immobilization of 42.1+/-2.09% antibody. The degree of antibody immobilization via surface aldehyde groups of glutaraldehyde (GA) on a precoated quartz crystal with polyethylenimine (PEI) was 31.6+/-0.3%. A piezoelectric probe was designed and used in dry assays to observe the frequency change due to addition of mass by the immobilization layers. The frequency changes recorded showed a better reproducibility and less added mass for the Protein A method. The frequency decrease due to microg of added antibodies was compared to frequency decrease calculated by the Sauerbrey equation. The experimental data was found to be only approximately 8% of theoretical data. The functionality of the immobilized antibodies with the Protein A method was tested with S. typhimurium in a wet chamber and the frequency decrease was compared to results of a similar system activated with PEI-GA immobilization. The frequency decreases with S. typhimurium concentration of approximately 1.5 x 10(9) CFU/ml were 50+/-2 Hz and 44+/-3 Hz for the Protein A method and PEI-GA method, respectively. It was concluded that although both methods resulted in comparable activities in terms of % immobilized protein and frequency decreases due to Salmonella binding, the Protein A method was favorable due to stability and better reproducibility of the immobilization layers.  相似文献   

6.
《Process Biochemistry》2014,49(9):1393-1401
In this study, a microbial biosensor for hydrogen sulfide (H2S) detection based on Thiobacillus thioparus immobilized in a gelatin matrix was developed. The T. thioparus was immobilized via either surface adsorption on the gelatin matrix or entrapment in the matrix. The bacterial and gelatin concentration in the support were then varied in order to optimize the sensor response time and detection limit for both methods. The optimization was conducted by a statistical analysis of the measured biosensor response with various bacterial and polymer concentrations. According to our experiments with both immobilization methods, the optimized conditions for the entrapment method were found to be a gelatin concentration of 1% and an optical density of 82. For the surface adsorption method, 0.6% gelatin and an optical density of 88 were selected as the optimal conditions. A statistical model was developed based on the extent of the biosensor response in both methods of immobilization. The maximum change in the potential of the solution was 23.16 mV for the entrapment method and 34.34 mV for the surface absorption method. The response times for the entrapment and adsorption methods were 160 s and 105 s, respectively. The adsorption method is more advantageous for the development of a gas biosensor due to its shorter response time.  相似文献   

7.
One critical aspect for the development of label-free immunosensors is the employment of highly uniform and repeatable antibody immobilization techniques. In this study, we investigated the use of two different silane molecules (3-glycidyloxypropyl)trimethoxysilane (GPS), and (3-mercaptopropyl)trimethoxysilane (MTS) for the immobilization of fluorescently labeled IgG antibodies on planar ZnO surfaces. The chemical modification of the surfaces was investigated using water contact angle measurements, AFM, and fluorescence microscopy. The results of the water contact angle measurements indicate increased surface hydrophobicity after treatment with GPS and MTS as compared to the control. Surface modification was further verified through AFM measurements which demonstrate an increased surface roughness and particle height after treatment with antibodies. The results of the fluorescence studies indicate that the immobilization protocol employing MTS produced 21% higher fluorescence on average with greater uniformity than the GPS-based protocol, which indicates a higher overall density in antibody coverage on the surface of the ZnO. Acoustic sensor tests were employed to confirm the functionality of sensors treated with the MTS protocol. The results indicate that the immobilization protocol imparts sensitivity and specificity to the ZnO-based devices.  相似文献   

8.
Many-sided investigations of urease immobilization methods were carried out to create the biosensor devices on the base of semiconductor structures. Special attention was concentrated on the biomembrane formation by means of urease and bovine serum albumin (BSA) cross-linking by gaseous glutaraldehyde. Optimal conditions for the formation process were selected which preserve about 20% of total urease activity after the cross-linking. The properties of enzyme immobilized by the above-mentioned method have been comprehensively studied. They included the urease activity dependence on pH, ionic strength, incubation buffer capacity as well as the enzyme stability during its functioning, storing and thermoinactivation. As was shown, for immobilized ureas Km value for urea at pH 7.0 and 20 degrees C is 1.65 time less than for free enzyme. In the presence of EDTA (1 mM) the enzyme activity in the biomembrane is practically unchanged under a month storing. Biomembrane possesses good adhesion to silicon surface and its swelling level under different conditions does not exceed 35%. The conclusion is made about the prospects of the used method of biomembrane formation for biosensor technology based on semiconductor structures.  相似文献   

9.
Summary Protoplasts released with high efficiency from vegetative and productive hyphae ofClaviceps purpurea were immobilized in 2% Ca-alginate. The yield of active immobilized protoplasts depended upon the age of the mycelium from which protoplasts were derived and was found to be 25–43% in comparison with native hyphae. During incubation in a modified production medium immobilized protoplasts were stable for at least 10–12 days. No external growth of regenerated hyphae from spherical beads of alginate gel with entrapped protoplasts was observed for 13–15 days of the batchwise incubation.  相似文献   

10.
Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250 mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant (Km). Controlling the overpotential at 105 mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants (K1), while an overpotential of 76 mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants (K2). The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on K1 (IK1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter K2 when overpotential is controlled between 118 and 140 mV under the simulated conditions.  相似文献   

11.
A microbial biosensor based on immobilised psychrotrophic yeast Yarrowia lipolytica integrated to FIA for the determination of middle chain alkanes was developed. The system responded very well to middle chain alkanes even at low operational temperatures down to +5 degrees C. The maximum sensitivity was obtained at 15 degrees C. A linear relationship was observed between the sensor response and dodecane concentration up to 100 microM.  相似文献   

12.
A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD(5) method for water samples.  相似文献   

13.
Fukui S  Sonomoto K  Itoh N  Tanaka A 《Biochimie》1980,62(5-6):381-386
Two novel methods--"photo-crosslinkable resin prepolymer method" and "urethane prepolymer method"--have been developed in our laboratory. These methods have the following advantages : 1) Prepolymers of desired properties, such as optional chain length, hydrophilicity or hydrophobicity, and ionic character etc., can be used for entrapment of biocatalysts : (2) preparation of gel-entrapped biocatalysts can be easily achieved under very mild conditions. Photo-crosslinked gels are conveniently obtained by several minutes illumination with near-UV light, of a mixture of liquid prepolymers having photo-sensitive functional groups, an appropriate sensitizer and the solution or suspension of biocatalyst. Formation of polyurethane gels is completed by only mixing water-miscible urethane prepolymers with the aqueous solution or suspension of biocatalyst. The biocatalysts entrapped by these methods are useful for a variety of purposes.  相似文献   

14.
The urease was immobilized onto nanoporous alumina membranes prepared by the two-step anodization method, and a novel piezoelectric urea sensing system with separated porous alumina/urease electrode has been developed through measuring the conductivity change of immobilized urease/urea reaction. The process of urease immobilization was optimized and the performance of the developed urea biosensor was evaluated. The obtained urea biosensor presented high-selectivity monitoring of urea, better reproducibility (S.D. = 0.02, n = 6), shorter response time (30 s), wider linear range (0.5 μM to 3 mM), lower detection limit (0.2 μM) and good long-term storage stability (with about 76% of the enzymatic activity retained after 30 days). The clinical analysis of the urea biosensor confirmed the feasibility of urea detection in urine samples.  相似文献   

15.
Calcium carbonate nanoparticles (nano-CaCO3) may be a promising material for enzyme immobilization owing to their high biocompatibility, large specific surface area and their aggregation properties. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) in order to develop glucose amperometric biosensor. The GOD/nano-CaCO3-based sensor exhibited a marked improvement in thermal stability compared to other glucose biosensors based on inorganic host matrixes. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) in order to oxidize the hydrogen peroxide generated by the enzymatic reaction. The biosensor exhibited a rapid response (6s), a low detection limit (0.1 microM), a wide linear range of 0.001-12 mM, a high sensitivity (58.1 mAcm-2M-1), as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

16.
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)的强疏水性是阻止其在土壤和水环境中微生物降解的主要因素.表面活性剂由于能够提高PAHs的表观溶解度而在PAHs的微生物降解中得到了广泛研究.截至目前,有关化学或生物表面活性剂促进PAHs的微生物降解已有大量报道,然而也有学者发现了表面...  相似文献   

17.
A simple and novel titania sol-gel derived optical biosensor coupled with carboxy seminaphthorhodamine-1-dextran (SNARF-1-dextran) as the fluorescent dye was fabricated for the determination of glutamate in water and biological samples. The NADH-dependent glutamate dehydrogenase (GLDH) was trapped in titania sol-gel derived matrix prepared by vapor deposition method. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the surface morphology of the spots. SEM and AFM images showed that the deposition of titania precursor at 27 degrees C for 6.5h was found to be suitable to form transparent titania sol-gel matrix to encapsulate GLDH and fluorescent probe. AFM images showed that the roughness of TiO(2) surface increased from 2.16 nm in the absence of GLDH and SNARF to 37.8 nm after the immobilization. The developed titania biosensor has good analytical performance with water samples. A dynamic range between 0.04 and 10mM with the detection limit of 5.5 microM were observed. The responses to glutamate in biological samples also showed good performances, and the dynamic range and detection limit were 0.02-10mM and 6.7 microM, respectively. High precision with relative standard deviations of 4.2 and 10.7% in water and biological samples, respectively, were also demonstrated. In addition, the biosensor showed a relatively high storage stability over more than 1 month. Results obtained in this study clearly demonstrate that this simple vapor deposition method can be successfully used to form transparent titania sol-gel film for the fabrication of glutamate biosensors that are suitable for optical detection of glutamate in water and biological samples.  相似文献   

18.
Effect of various nonionic surfactants on growth of Escherichia coli   总被引:1,自引:0,他引:1  
Rose, Michael J., Jr. (Veterans Administration Hospital, Washington, D.C.), Stephen A. Aron, and Bernard W. Janicki. Effect of various nonionic surfactants on growth of Escherichia coli. J. Bacteriol. 91:1863-1868. 1966.-Escherichia coli cultivated in media containing 0.5, 1.0, 2.0, or 4.0% concentrations of surface-active polyoxyethylene derivatives of formaldehyde polymers of octyl phenol (Triton WR-1339; Macrocyclon) or of sorbitan mono-fatty acid esters (Tween 20, 40, 60, and 80) exhibited significantly retarded growth only at the highest concentration. To determine the mechanism of bacteriostasis, certain derivatives and compounds related to the surfactants were investigated. Experiments with compounds related to the Triton-type agents demonstrated that incorporation of monomeric substances (Triton X-205, X-305, Igepal CA-730, or Dowfax 9N20) into the medium at a concentration of 4.0% did not inhibit the growth of E. coli. It was concluded that the formaldehyde polymer was essential for growth inhibition by the polyoxyethylene derivatives of octyl phenol. The inhibitory activity of the Tween compounds, in contrast, appeared to result from the unesterified fatty acids which contaminate the commercial preparations. Polyol (60), the sorbitan polyoxyethylene derivative of Tween 60 and the basic structural unit of all the Tween-type compounds, and a Tween 80 preparation which was purified by extraction of the unesterified oleic acid, were not inhibitory. Moreover, the amount of free oleic acid present as a contaminant of Tween 80 was found to be sufficient to cause significant growth inhibition. These results and the observation that E. coli does not appear to hydrolyze the esterified fatty acid of Tween 80 led to the conclusion that growth inhibition obtained with various Tween compounds probaby is a function of their respective fatty acid contaminants.  相似文献   

19.
20.
A novel glucose biosensor was developed, based on the immobilization of glucose oxidase (GOD) with cross-linking in the matrix of bovine serum albumin (BSA) on a Pt electrode, which was modified with gold nanoparticles decorated Pb nanowires (GNPs-Pb NWs). Pb nanowires (Pb NWs) were synthesized by an l-cysteine-assisted self-assembly route, and then gold nanoparticles (GNPs) were attached onto the nanowire surface through –SH–Au specific interaction. The morphological characterization of GNPs-Pb NWs was examined by transmission electron microscopy (TEM). Cyclic voltammetry and chronoamperometry were used to study and to optimize the electrochemical performance of the resulting biosensor. The synergistic effect of Pb NWs and GNPs made the biosensor exhibit excellent electrocatalytic activity and good response performance to glucose. The effects of pH and applied potential on the amperometric response of the biosensor have been systemically studied. In pH 7.0, the biosensor showed the sensitivity of 135.5 μA mM−1 cm−2, the detection limit of 2 μM (S/N = 3), and the response time <5 s with a linear range of 5–2200 μM. Furthermore, the biosensor exhibits good reproducibility, long-term stability and relative good anti-interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号