首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
The operating and storage stability of a receptor element of an amperometric biosensor based on the Pseudomonas rathonis strain T capable of degrading surfactants was tested. Microbial cells were immobilized by incorporation in gels (agar, agarose, and calcium-alginate), polyvinyl alcohol membrane, adhesion to the chromatographic paper GF/A, or by the cross-linking induced by glutaric aldehyde. Incorporation of microbial cells in agar gel provides the long-standing conservation of their activity and viability during measurements of high concentrations of surfactants and allows the receptory element of the biosensor to be rapidly recovered after the measurements.  相似文献   

2.
The developed biosensor models were based on the use of immobilized Pseudomonas and Achromobacter cells for polycyclic aromatic hydrocarbons and surfactants detection. The responses of biosensors based on bacteria-degraders of anionic surfactants for organic substrates, which related to different classes of surfactants, aromatic and policyclic aromatic hydrocarbons (PAH) were investigated. The sensor showed the highest sensitivity to anionic surfactants and PAH. The lower limit of sodium dodecyl sulfate detection is within a range of 0.25-0.5 mg/l (0.86-1.73 microM). The sensors showed the highest sensitivity to naphthalene (1-6 mM) and anthracene, fluorene, phenanthrene. All strains that have been investigated may be used as a receptor element of biosensors for detection of PAH and surfactants.  相似文献   

3.
A model of a reactor-type biosensor based on the Rhodococcus erythropolis HL PM-1 was developed for amperometric detection of 2,4-dinitrophenol (2,4-DNP). The effects of the matrix material (agar and calcium alginate gels, ceramic support, and cellulose powder) on the biosensor signal concentration dependence, detection time, and biosensor stability were studied. In the case of bacterial cells immobilized on cellulose powder, the lower limit of 2,4-DNP detection was 20 M and the time of single analysis, the biosensor recovery included, was 30–50 min. In the continuous detection mode, the biosensor response was maintained at a stable level without biosensor inactivation for ten days. The biosensor can be used as an element of a complex analytical system for detecting nitroaromatic compounds in samples.  相似文献   

4.
The dependence of the sensitivity of a microbial biosensor of anionic surfactants (AS) on the growth phase ofPseudomonas rathonis T, a strain capable of degrading surfactants, was studied. Correlations were found between the optimum values of temperature and pH for microbial growth, substrate utilization, and functional performance of the microbial biosensor. These results allow the process of AS detection to be optimized.  相似文献   

5.
A model of a reactor-type biosensor based on the Rhodococcus erythropolis HL PM-1 was developed for amperometric detection of 2,4-dinitrophenol (2,4-DNP). The effects of the matrix material (agar and calcium alginate gels, ceramic support, and cellulose powder) on the biosensor signal concentration dependence, detection time, and biosensor stability were studied. In case of bacterial cells immobilized on cellulose powder, the lower limit of 2,4-DNP detection was 20 microM and the time of single analysis, the biosensor recovery included, was 30-50 min. In the continuous detection mode, the biosensor response was maintained at a stable level without biosensor inactivation for ten days. The biosensor can be used as an element of a complex analytical system for detecting nitroaromatic compounds in samples.  相似文献   

6.
Strain Comamonas testosteroni TI, capable of degrading the nonionic surfactant (NIS) nonylphenolethoxylate (OP-10), was used for constructing a pilot cellular biosensor. The lower NIS detection limit for the biosensor was 0.25 mg/l. We studied the substrate specificity of the biosensor with respect to a wide range of organic compounds: surfactants, polyaromatic compounds (PAC), carbohydrates, alcohols, etc. It was shown that the biosensor based on Comamonas testosteroni TI did not respond to glucose, which was an advantage over the formerly described biosensor based on Pseudomonas rathonis T. The amplitude of the sensor response remained stable for 10 days.  相似文献   

7.
Ratiometric measurements with FRET-based biosensors in living cells using a single fluorescence excitation wavelength are often affected by a significant ion sensitivity and the aggregation behavior of the FRET pair. This is an important problem for quantitative approaches. Here we report on the influence of physiological ion concentration changes on quantitative ratiometric measurements by comparing different FRET pairs for a cAMP-detecting biosensor. We exchanged the enhanced CFP/enhanced YFP FRET pair of an established Epac1-based biosensor by the fluorophores mCerulean/mCitrine. In the case of enhanced CFP/enhanced YFP, we showed that changes in proton, and (to a lesser extent) chloride ion concentrations result in incorrect ratiometric FRET signals, which may exceed the dynamic range of the biosensor. Calcium ions have no direct, but an indirect pH-driven effect by mobilizing protons. These ion dependences were greatly eliminated when mCerulean/mCitrine fluorophores were used. For such advanced FRET pairs the biosensor is less sensitive to changes in ion concentration and allows consistent cAMP concentration measurements under different physiological conditions, as occur in metabolically active cells. In addition, we verified that the described FRET pair exchange increased the dynamic range of the FRET efficiency response. The time window for stable experimental conditions was also prolonged by a faster biosensor expression rate in transfected cells and a greatly reduced tendency to aggregate, which reduces cytotoxicity. These properties were verified in functional tests in single cells co-expressing the biosensor and the 5-HT(1A) receptor.  相似文献   

8.
Olfactory receptors, which are responsible for sensing odor molecules, form the largest G protein-coupled receptor (GPCR) family in mammalian animals. These proteins play an important role in the detection of chemical signals and signal transduction to the brain. Currently, only a limited number of olfactory receptors have been characterized, which is mainly due to the lack of sensitive and efficient tools for performing functional assays of these receptors. This paper describes a novel surface acoustic wave (SAW)-based biosensor for highly sensitive functional assays of olfactory receptors. An olfactory receptor of Caenorhabditis elegans, ODR-10, was expressed on the plasma membrane of human breast cancer MCF-7 cells, which was used as a model system for this study. For specific odorant response assays, the membrane fraction of MCF-7 cells containing ODR-10 was extracted and integrated with our SAW sensors. The response of ODR-10 to various odorants was monitored by recording the resonance frequency shifts of SAWs applied to the sensor. Our results show that heterologously expressed ODR-10 receptors can specifically respond to diacetyl, its natural ligand. Dose-dependent responses were obtained by performing measurements using various concentrations of diacetyl. The sensitivity of this biosensor is 2 kHz/ng and can detect concentrations as low as 10−10 mM, which is 10× lower than what has previously been reported. This biosensor can be used to characterize odorant response profiles of olfactory receptors and provide information rich data for functional assays of olfactory receptors. In addition to providing a greater understanding of the biological mechanisms of GPCRs, such data holds great potential in many other fields such as food industry, biomedicine, and environmental protection.  相似文献   

9.
The large number of estrogen receptor (ER) binding sites of various sequence patterns requires a sensitive detection to differentiate between subtle differences in ER-DNA binding affinities. A self-assembled monolayer (SAM)-assisted silicon nanowire (SiNW) biosensor for specific and highly sensitive detection of protein-DNA interactions, remarkably in nuclear extracts prepared from breast cancer cells, is presented. As a typical model, estrogen receptor element (ERE, dsDNA) and estrogen receptor alpha (ERα, protein) binding was adopted in the work. The SiNW surface was coated with a vinyl-terminated SAM, and the termination of the surface was changed to carboxylic acid via oxidation. DNA modified with amine group was subsequently immobilized on the SiNW surface. Protein-DNA binding was finally investigated by the functionalized SiNW biosensor. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to characterize the stepwise functionalization of the SAM and DNA on bare silicon surface, and to visualize protein-DNA binding on the SiNW surface, respectively. We observed that ERα had high sequence specificity to the SiNW biosensor which was functionalized with three different EREs including wild-type, mutant and scrambled DNA sequences. We also demonstrate that the specific DNA-functionalized SiNW biosensor was capable of detecting ERα as low as 10 fM. Impressively, the developed SiNW biosensor was able to detect ERα-DNA interactions in nuclear extracts from breast cancer cells. The SAM-assisted SiNW biosensor, as a label-free and highly sensitive tool, shows a potential in studying protein-DNA interactions.  相似文献   

10.
A simple and effective method for the drying of immobilized bacterial cells to be used directly in a microbial biosensor for measurement of activity is reported. As a case example, plasmid-bearing cells of Alcaligenes eutrophus JMP 134, DSM 4058 were immobilized on various carriers and liquid-dried. The dried cell-matrix was used directly after rehydration/reactivation as the biological component of a biosensor for determining the concentration of xenobiotic compounds in the environment. Good viability results were obtained after long-term storage and cells exhibited no loss of plasmids responsible for the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation. The activity of the cells for 2,4-D was proved using a respiration electrode. No time-consuming, repeated cell cultivation and harvesting was required, as the cells preserved from a single batch served as a continuous source for activity measurements. Many other microbial cultures can be preserved by this method and the cells preserved in the form of immobilized dried cell-matrix can be used directly to perform enzymatic tests, complex biochemical conversions and for production in the reactors. The dried cell-matrix can serve as a stable interchangeable component for a multipurpose biosensor.  相似文献   

11.
This work shows the feasibility of an olfactory biosensor based on the immobilization of Saccharomyces cerevisiae yeast cells genetically modified to express the human olfactory receptor OR17-40 onto interdigitated microconductometric electrodes. This olfactory biosensor has been applied to the detection of its specific odorant (helional) with a high sensitivity (threshold 10−14 M). In contrast, no significant response was observed using a non-specific odorant (heptanal), which suggests a good selectivity. Thus, this work may represent a first step towards a new kind of bioelectronic noses based on whole yeast cells and allowing a real time monitoring of olfactory receptor activation. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet, France, 14–19 October, 2006.  相似文献   

12.
The effects of stress factors (drying, low temperature, and long-term storage) on the survival of the actinobacteria Gordonia polyisoprenivorans 135, which is used as a biosensor receptor to detect sodium benzoate in water solutions, were studied, as well as the effects of these factors on the biodegradation of aromatic compounds. The cells remained viable after starvation and subsequent long-term storage in suspension. Immobilization of G. polyisoprenivorans 135 cells prevented the loss of the viability when they were dried prior to storage. The immobilized cells, which were used as a biosensor receptor element, were active in relation to benzoate for more than 9 months. Storage of the receptor at 4°C for four months led to a sensor response to 10–4 and 10–3 M benzoate at a level of 69 and 79% of the maximum, respectively, while the response was 58 and 51% (70 pA/s and 140 pAs), respectively, after 9 months of storage. These results suggest that actinobacterial cells can survive an adverse environment and can be used to create highly stable and sensitive bioreceptors.  相似文献   

13.
A genetically engineered bioluminescent bacterium (lac::luxCDABE) was immobilized to develop a whole cell biosensor for the detection of toxic gaseous chemicals. The toxicity of chemicals can be evaluated through the bioluminescent reaction as it reduces in intensity when the cells experience toxic or lethal conditions. This whole cell biosensor was fabricated, using an immobilization technique utilizing solid agar medium, for the measurement of toxicity through direct contact of the cells with the gas. To enhance the sensitivity of the biosenor, glass beads were used and the thickness of the agar layer was reduced. The bioluminescent response was measured using a fiber optic probe connected between the biosensor kit and a luminometer. As sample gaseous toxic chemicals, BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) gases were selected and their vapors were produced by a gas generation system. The concentrations of the gaseous chemicals injected into the chamber were controlled by the time of exposure and were measured using a portable gas chromatograph (Allstech., USA). Additions of glass beads facilitated gas diffusion through the solid medium, making the biosensor more sensitive. In addition, a thinner matrix layer was more advantageous for the detection of gas toxicity.  相似文献   

14.
Rheological and thermal properties of agar sol and gel in presence of various cationic, anionic and non-ionic surfactants are reported. The agar used was from the red seaweed Gelidiella acerosa. The gel strength, viscosity, rigidity (G'), gelling temperature and melting temperature were observed to decrease in presence of non-ionic surfactants whereas these were enhanced in presence of ionic surfactants. TGA studies showed that 1.5% agar gels containing non-ionic surfactants lose water at a lower temperature than the control agar gel whereas gels containing ionic surfactants hold on to water more tenaciously. DSC studies, on the other hand, show that the gel to sol transition occurs at lower temperatures in presence of non-ionic surfactants and at higher temperature in presence of ionic surfactants when compared with the control gel. The non-ionic surfactants, Triton X-100 and Brij 35, enabled relatively concentrated agar extractive to be filtered readily, as a result of which water usage in the process could be reduced by 50%. The surfactant was subsequently removed through freeze-thaw operations to restore the gelling capacity of the agar. The finding that 0.3-0.4% (w/v) sodium lauryl sulfate (SLS) lowers the sol-gel transition temperature from 41 to 36 degrees C without adversely affecting gel strength is another useful outcome of the study that may enable better formulations of bacteriological agar to be prepared.  相似文献   

15.
A biosensor for rapid detection of bacterial count based on adenosine 5′-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin–luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 103 to 108 colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n = 22) within 5 min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.  相似文献   

16.
In this paper we describe a new surface plasmon resonance (SPR) biosensor dedicated to potential estrogenic compounds prescreening, by developing an estrogen receptor (ER) specific DNA chip. Through the covalent binding of a DNA strain wearing the estrogen response element (ERE) to an activated 6-mercapto-1-hexadecanoic acid and 11-mercapto-1-undecanol self-assembled monolayer on gold surface, the SPR biosensor allows to detect specifically, quickly, and without any labeling the binding of ER in the presence of estrogen. In parallel, we investigated the ER interaction with itself, in order to study the formation of ER dimer apparently needed to activate the gene expression through ERE interaction. For that, we engaged force spectroscopy experiments that allowed us to prove that ER needs estrogen for its dimerization. Moreover, these ER/ER intermolecular measurements enabled to propose an innovative screening tool for anti-estrogenic compounds, molecules of interest for hormono-dependent cancer therapy.  相似文献   

17.
Electrochemical impedance spectroscopy (EIS) technique has proved to be an effective method for monitoring the immobilization of various bioactive species such as enzymes, DNA, whole cells, and so forth. In this work we describe the development of an electrochemical whole cell based biosensor. Biotinylated fluorescent E. coli are immobilized onto a cysteamine, Sulfo-NHS-LC-biotin, and avidin modified gold electrodes. Immobilized bacteria are clearly observed using confocal microscopy. Electrochemical measurements are based on the charge-transfer kinetics of [Fe (CN)6]3−/4− redox couple. The experimental impedance data were modelised with a computer. SAM assembly and the subsequent immobilization of bacteria on the gold bare electrodes greatly increased the electrontransfer resistance (R et ) and reduced the constant phase element (CPE). It’s interesting to note, the hard immobilization of bacteria on the surface of electrode and do not remove during measurements. The effect of glucose addition was studied in the range of 10−7 μM to 10 μM. The relation between the evolution of R et and D-glucose concentration was found to be linear for values ranging from 10−5 μM to 10−1 μM and reached saturation for higher concentrations. Such biosensor could be applied to a more fundamental study of cell metabolism and drugs effect.  相似文献   

18.
The dependence of the sensitivity of a microbial biosensor of anionic surfactants (AS) on the growth phase of Pseudomonas rathonis T, a strain capable of degrading surfactants, was studied. Correlations were found between the optimum values of temperature and pH of microbial growth, substrate utilization, and functional performance of the microbial biosensor. These results allow the process of AS detection to be optimized.  相似文献   

19.
An enhanced expression of transforming growth factor-α (TGFα) was demonstrated in two clones of NOG-8 mouse mammary epithelial cells, NOG-8 SR1 and NOG-8 SR2, that have been transformed by a v-Ha-ras oncogene. The amount of TGFα production in NOG-8 SR1 and NOG-8 SR2 cells was dependent on the level of p21ras expression in these clones, which directly correlated with their cloning efficiency in soft agar. There was also a decrease in the number of epidermal growth factor (EGF) receptors on the NOG-8 SR1 and NOG-8 SR2 cells that is proportional to the amount of TGFα secreted. These effects were specific for ras because neu-transformed NOG-8 cells grew in soft agar at a comparable level to NOG-8 SR2 cells yet did not show any increase in TGFα production or change in EGF receptor expression.  相似文献   

20.
Membrane type 1 matrix metalloproteinase (MT1-MMP) plays a critical role in cancer cell biology by proteolytically remodeling the extracellular matrix. Utilizing fluorescence resonance energy transfer (FRET) imaging, we have developed a novel biosensor, with its sensing element anchoring at the extracellular surface of cell membrane, to visualize MT1-MMP activity dynamically in live cells with subcellular resolution. Epidermal growth factor (EGF) induced significant FRET changes in cancer cells expressing MT1-MMP, but not in MT1-MMP-deficient cells. EGF-induced FRET changes in MT1-MMP-deficient cells could be restored after reconstituting with wild-type MT1-MMP, but not MMP-2, MMP-9, or inactive MT1-MMP mutants. Deletion of the transmembrane domain in the biosensor or treatment with tissue inhibitor of metalloproteinase-2, a cell-impermeable MT1-MMP inhibitor, abolished the EGF-induced FRET response, indicating that MT1-MMP acts at the cell surface to generate FRET changes. In response to EGF, active MT1-MMP was directed to the leading edge of migrating cells along micropatterned fibronectin stripes, in tandem with the local accumulation of the EGF receptor, via a process dependent upon an intact cytoskeletal network. Hence, the MT1-MMP biosensor provides a powerful tool for characterizing the molecular processes underlying the spatiotemporal regulation of this critical class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号