首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Lactic acid fermentation includes several reactions in association with the microorganism growth. A kinetic study was performed of the conversion of multiple substrates to lactic acid using Lactobacillus bulgaricus. Batch experiments were performed to study the effect of different substrates (lactose, glucose, and galactose) on the overall bioreaction rate. During the first hours of fermentation, glucose and galactose accumulated in the medium and the rate of hydrolysis of lactose to glucose and galactose was faster than the convesion of these substrates. Once the microorganism built the necessary enzymes for the substrate conversion to lactic acid, the conversion rate was higher for glucose than for galactose. The inoculum preparation was performed in such a way that healthy young cells were obtained. By using this inoculum, shorter fermentation times with very little lag phase were observed. The consumption patterns of the different substrates converted to lactic acid were studied to determine which substrate controls the overall reaction for lactic acid production. A mathematical model (unstructured Monod type) was developed to describe microorganism growth and lactic acid production. A good fit with a simple equation was obtained. It was found experimentally that the approximate ratio of cell to substrate was 1 to 10, the growth yield coefficient (Y(XS)) was 0.10 g cell/g substrate, the product yield (Y(PS)) was 0.90 g lactic acid/g substrate, and the alpha parameter in the Luedeking-Piret equation was 9. The Monod kinetic parameters were obtained. The saturation constant (K(S)) was 3.36 g/L, and the specific growth rate (microm ) was 1.14 l/h.  相似文献   

2.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

3.
Summary Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 rpm and under conditions of controlled temperature (42° C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). L. helveticus is more advantageous than Streptococcus thermophilus and Lactobacillus delbrueckii for the production of lactic acid from WU. The L. helveticus process will provide an alternative solution to the phage contamination in dairy industries using Lactobacillus bulgaricus.  相似文献   

4.
d ‐Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly‐d ‐lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d ‐lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate‐rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d ‐lactic acid production (27.9 g/L, 99.9% optical purity of d ‐lactic acid), with a higher glucose to d ‐lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d ‐lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed‐batch SSF approach, where it was shown that the d ‐lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d ‐lactic acid from DDGS as it reduced the overall processing time and yielded high d ‐lactic acid concentrations.  相似文献   

5.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

6.
The medium needed to perform a fermentation process with viable cells of Lactobacillus casei ssp. rhamnosus NBIMCC 1013 for the production of lactic acid was modeled and optimized. On the basis of single‐factor experiments and statistical analysis, the significant factors affecting the fermentation process, i.e. the concentration of carbon source, concentrations of both yeast and meat extracts, and the range of variability of these components were determined. Modeling and optimization of the medium contents were performed using central composite design. The composition of the medium used for the production of lactic acid (g/L) was as follows: glucose 69.8, meat extract 17.07, yeast extract 10.9, CH3COONa 10, K2HPO4 0.25, KH2PO4 0.25, MgSO4·7H2O 0.05, and FeSO4 0.05. The maximum specific growth rate of the lactic acid bacteria (μ=0.51 h−1) and other kinetic parameters were determined during cultivation in a laboratory bioreactor using the logistic equation and the Luedeking–Piret model. The obtained medium allows the production of lactic acid under optimum conditions, at high specific sugar assimilation rates and high lactic acid accumulation rates. The positive results of the paper are the new nutrient medium for lactic acid production and the process kinetic model, enabling scaling up and switching to a continuous process.  相似文献   

7.
Cull potato is currently an under‐utilized biomass in the potato processing states of the USA. L(+)‐Lactic acid production by three Rhizopus strains and one homofermentative, facultative anaerobic Lactobacillus amylophilus strain was investigated using potatoes as the sole nutrient supply in the culture medium. Rhizopus oryzae NRRL 395 was chosen as the strain for further studies because it showed the highest lactate yield. The fermentation conditions for seed cultures were studied for three treatment structures using a completely randomized design. Optimum conditions for the seed culture were determined to be 2 % potato medium, 104 spores/mL concentration, and 24 h of fermentation. Plackett‐Burman and central composite designs were used to screen and optimize the factors for lactic acid production. Substrate (potato) concentration, fermentation temperature, and shaking speed were found to be the most significant factors affecting both the yield and concentration of lactate. Optimum values for substrate concentration, fermentation temperature, and shaking speed were 10 %, 27 °C, and 170 rpm, respectively. Under these optimum conditions, the lactate concentration was predicted by the model to be 35.5 g/L, which was verified by the experimental data (33.3 g/L). The results indicate that cull potato can be an effective feedstock for R. ryzae NRRL 395 in the production of lactic acid.  相似文献   

8.
Ultraviolet-irradiation (UV), ethyl methane sulfonate (EMS) and acridine orange (AO) were used to induce citric acid overproduction mutations in Aspergillus niger UMIP 2564. Among 15, eight of the mutant derivatives, were improved with respect to citric acid production from sucrose in batch cultures. Maximum product yield (60.25%) was recorded by W5, a stable UV mutant, with approximately 3.2-fold increase when compared to the parental wild type strain. In terms of the kinetic parameters for batch fermentation processes, the mutation doubled the specific substrate uptake rate and achieved 4.5- and 7.5-fold improvements in citric acid productivity and specific productivity, respectively. For reduction of the fermentation medium cost, corn steep liquor and calcium phosphate pre-treated beet molasses were successfully used as substituents of nitrogen and carbon sources in the growth medium, respectively. These medium substitutions resulted in a W5 citric acid fermentation culture with a product yield of 74.56%.  相似文献   

9.
Continuous production of lactic acid from glucose byLactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Compared with the control, lactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Y P/S, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control. Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce less by-product but more product, lactic acid.  相似文献   

10.
A cellulolytic, acetic acid producing anaerobic bacterial isolate, Gram negative, rod-shaped, motile, terminal oval shaped endospore forming bacterium identified as Clostridium lentocellum SG6 based on physiological and biochemical characteristics. It produced acetic acid as a major end product from cellulose fermentation at 37°C and pH 7.2. Acetic acid production was 0.67 g/g cellulose substrate utilized in cellulose mineral salt (CMS) medium. Yeast extract (0.4%) was the best nitrogen source among the various nitrogenous nutrients tested in production medium containing 0.8% cellulose as substrate. No additional vitamins or trace elemental solution were required for acetic acid fermentation. This is the highest acetic acid fermentation yield in monoculture fermentation for direct conversion of cellulose to acetic acid.  相似文献   

11.
Summary The production of citric acid by batch fermentation with the yeast strain Candida tropicalis ATCC 20240 was chosen as a potential process for the valorization of kraft black liquor. The effect of nitrogen concentration was studied and direct bioconversion of acetate to citrate was achieved when no nitrogen was supplemented to the medium. The use of kraft black liquor's acetate as a potential substrate for citric acid production was investigated. The acid precipitated liquor was highly inhibitory when its concentration was above 25% of the fermentation broth content. The yields of citric acid at low concentrations of kraft black liquor (5% and 15%) were the same as those recorded in synthetic acetate medium. Other organic acids present in the liquor may affect the yields and rates of citric acid production over acetate. Substrate uptake rates and product formation rates were lower, however, in comparison to synthetic media. The utilization of immobilized biomass improved the process parameters on kraft black liquor and enhanced the fermentation capabilities.  相似文献   

12.
AIMS: Development of cost-effective production medium by applying statistical designs for single-step fermentation of starch (corn flour - CF) to L-(+) lactic acid, using inexpensive nitrogen sources as substitutes for peptone and yeast extract in MRS medium by amylolytic Lactobacillus amylophilus GV6. METHODS AND RESULTS: A two-level Plackett-Burman design was employed for screening various available crude starches (flours) for L-(+) lactic acid production by Lact. amylophilus GV6 using red lentil flour (RL) and bakers yeast cells (YC) as substitutes for commercial peptone and yeast extract in MRS medium in anaerobic submerged fermentation. Of all the tested flours, CF was found to be the most significant. Central composite rotatable design was employed to determine maximum production of L-(+) lactic acid at optimum values of process variables, CF, RL, YC, CaCO(3) and incubation period (IP). minitab analyses showed that lactic acid production was significantly affected by the linear terms CF, RL, CaCO(3) and IP. The interactions of CF-RL, CF-YC, CF-CaCO(3), RL-YC and RL-CaCO(3) and the square terms CF and IP were significant. The maximum lactic acid production of 29 g/37 g of starch present in 50 g of CF was obtained at optimized concentrations of CF 5%, RL 0.7%, YC 0.8%, CaCO(3) 0.8% and IP 2.9 days. CONCLUSIONS: Successful application of Plackett-Burman design helped in identifying CF as the best carbon source among the tested flours for L-(+) lactic acid production using inexpensive nitrogen sources. Further optimization of the process variables by response surface methods (RSMs) led to maximum production of lactic acid (29 g lactic acid from 37 g of starch present in 50 g of flour). SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus amylophilus GV6 showed 78.4% lactic acid production efficiency (g lactic acid produced/g starch taken) and 96% lactic acid yield efficiency (g lactic acid produced/g starch utilized). Information from the present studies provides a better understanding on production of L-(+) lactic acid on fermentation of CF using inexpensive nitrogen sources and on changes in the production as a response from interaction of factors. Use of inexpensive nitrogen sources and starch as substrate in MRS medium for single-step fermentation of lactic acid can become an efficient, economic and viable process. This report is on optimization of inexpensive nitrogen sources completely replacing peptone and yeast extract in single-step submerged fermentation of starch (present in CF) to lactic acid with high production efficiency.  相似文献   

13.
Optimization studies were carried out for the production of L-lactic acid from the fermentation of beet molasses by Lactobacillus delbrueckii. A Central Composite Design was used to determine the optimum values of the process variables (temperature, pH, inoculum concentration, and initial sucrose concentration) for obtaining the maximum yield and the maximum volumetric productivity of lactic acid. Among the variables selected for study, it was found that all of them apart from the temperature significantly affected the responses (yield and volumetric productivity of lactic acid). The Central Composite Design also permitted formulating two second-order polynomial empirical models relating to the responses and the significant variables. From these models it was possible to determine the value of the variables giving the maximum yield of lactic acid production (87.8%) and the maximum volumetric rate of lactic acid biosynthesis (2.7 g/l · h). Finally, the dependence of the lactic acid yield and productivity on the model variables was investigated. All conclusions are restricted to the experimental range studied.  相似文献   

14.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

15.
The potential for the production of 1,4-piperazinium-(L, L)-dilactate from L(+)-lactic acid preparations obtained by fermentation was studied. Piperazinium dilactate was found to be a very suitable source material for poly(lactic acid) production. In a novel polymerization process, the intermediate dilactide was directly formed in the salt melt at a moderate temperature. High-performance cultivation of Lactobacillus paracasei on a glucose-MRS medium was carried out using high-viability inocula. After the cell mass had been removed from the fermentation broth by centrifugation and/or ultrafiltration, the lactic acid solution was concentrated to 45% [w/w] by a two-stage electrodialysis process. Two methods of preparing 1,4-piperazinium dilactate were developed: the first from the medium-concentrated lactic acid (45%) and the second from a highly-concentrated lactic acid (85%) obtained by evaporation from the first one. Because there were no physical data on 1,4-piperazinium-(L, L)-dilactate in specialized literature, the pure product was characterized according to its solubility characteristics, melting point and spectroscopic analysis.  相似文献   

16.
A rotating fibrous-bed bioreactor (RFB) was developed for fermentation to produce L(+)-lactic acid from glucose and cornstarch by Rhizopus oryzae. Fungal mycelia were immobilized on cotton cloth in the RFB for a prolonged period to study the fermentation kinetics and process stability. The pH and dissolved oxygen concentration (DO) were found to have significant effects on lactic acid productivity and yield, with pH 6 and 90% DO being the optimal conditions. A high lactic acid yield of 90% (w/w) and productivity of 2.5 g/L.h (467 g/h.m(2)) was obtained from glucose in fed-batch fermentation. When cornstarch was used as the substrate, the lactic acid yield was close to 100% (w/w) and the productivity was 1.65 g/L.h (300 g/h.m(2)). The highest concentration of lactic acid achieved in these fed-batch fermentations was 127 g/L. The immobilized-cells fermentation in the RFB gave a virtually cell-free fermentation broth and provided many advantages over conventional fermentation processes, especially those with freely suspended fungal cells. Without immobilization with the cotton cloth, mycelia grew everywhere in the fermentor and caused serious problems in reactor control and operation and consequently the fermentation was poor in lactic acid production. Oxygen transfer in the RFB was also studied and the volumetric oxygen transfer coefficients under various aeration and agitation conditions were determined and then used to estimate the oxygen transfer rate and uptake rate during the fermentation. The results showed that the oxygen uptake rate increased with increasing DO, indicating that oxygen transfer was limited by the diffusion inside the mycelial layer.  相似文献   

17.
The present investigation deals with role of Ca++ ions in increasing the yield of citric acid in a repeated-batch cultivation system (working volume 9-1) and its kinetic basis. Five different hyper-producing strains of Aspergillus niger were evaluated for citric acid production using clarified cane-molasses as basal substrate. Among the cultures, NGGCB101 (developed by u.v./chemical mutation in our labs) gave maximum production of citric acid i.e., 87.98 g/1, 6 days after mycelial inoculation. The addition of CaCl2 to the culture medium promoted the formation of small rounded fluffy pellets (1.55 mm, diameter), which were desirable for citric acid productivity. CaCl2 at a level of 2.0 M, added during inoculation time, was optimized for commercial exploitation of molasses. During repeated-batch culturing, a yield of citric acid monohydrate of 128.68 g/1 was obtained when the sampling vs. substrate feeding was maintained at 4-1 (44.50% working volume). The incubation period was reduced from 6 to only 2 days. The values of kinetic parameters such as substrate consumption and product formation rates revealed the hyperproducibility of citric acid by the selected Aspergillus niger NGGCB101 (LSD = 0.456a, HS). Case studies are highly economical because of higher yield of product, lower energy consumption and the use of raw substrate without any additional supplementation.  相似文献   

18.
Aims: The overall kinetics of the fermentation of four oat fractions obtained by debranning using three potentially probiotic lactic acid bacteria were investigated. The main objective was to study the suitability of these fractions as fermentation media for the growth and the metabolic production of bacteria isolated from human intestine. Methods and Results: The cell growth, lactic acid production and substrate uptakes of the three lactobacilli was monitored for 30 h. An unstructured mathematical model was used to describe and fit the experimental data. In the medium from fraction B (1–3% pearlings or β-glucan-rich fraction) all strains reached the highest cell populations, maximum growth rates and maximum lactic acid productions. This could be because of the high levels of total fibre and β-glucan of this fraction. Limited growth and lactic acid formation was found in medium A (0–1% pearlings or bran-rich fraction). Conclusions: Medium B (1–3% pearling fraction) is the most suitable for fermentation and produces considerably higher probiotic cell concentrations. Significance and Impact of the Study: Debranning technology could be used to separate fractions from cereal grains for the production of functional formulations with higher probiotic levels than the ones that were obtained with the whole grain.  相似文献   

19.
Summary Investigations have been carried out on lactic acid production by Lactobacillus helveticus CNRZ 303 in whey ultrafiltrate. Addition of beet molasses was investigated with good results, although yeast extract proved to be more effective. The size of inoculum and the preculture medium also played a significant role in determining the amount of lactic acid produced during the fermentation process. High lactose consumption (94.09%), together with good lactic acid production (26.09 g/l) and yield (0.90%), were obtained in whey ultrafiltrate supplemented with 1% (w/v) beet molasses (WUM), with a 10% (w/v) inoculum and peptonized milk as preculture medium. Although these results were similar to those obtained when yeast extract was used as supplement, the maximum volumetric productivities proved to be quite different, and were definitely higher with yeast extract. Offprint requests to: L. Chiarini  相似文献   

20.
Lactic acid production by recycle batch fermentation using immobilized cells of Lactobacillus casei subsp. rhamnosus was studied. The culture medium was composed of whey treated with an endoprotease, and supplemented with 2.5 g/L of yeast extract and 0.18 mM Mn(2+) ions. The fermentation set-up comprised of a column packed with polyethyleneimine-coated foam glass particles, Pora-bact A, and connected with recirculation to a stirred tank reactor vessel for pH control. The immobilization of L. casei was performed simply by circulating the culture medium inoculated with the organism over the beads. At this stage, a long lag period preceded the cell growth and lactic acid production. Subsequently, for recycle batch fermentations using the immobilized cells, the reducing sugar concentration of the medium was increased to 100 g/L by addition of glucose. The lactic acid production started immediately after onset of fermentation and the average reactor productivity during repeated cycles was about 4.3 to 4.6 g/L . h, with complete substrate utilization and more than 90% product yield. Sugar consumption and lactate yield were maintained at the same level with increase in medium volume up to at least 10 times that of the immobilized biocatalyst. The liberation of significant amounts of cells into the medium limited the number of fermentation cycles possible in a recycle batch mode. Use of lower yeast extract concentration reduced the amount of suspended biomass without significant change in productivity, thereby also increasing the number of fermentation cycles, and even maintained the D-lactate amount at low levels. The product was recovered from the clarified and decolorized broth by ion-exchange adsorption. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:841-853, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号