首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphatase activity in Trypanosoma rhodesiense has been examined histochemically by light and electron microscopy and by enzymatic assay in homogenate fractions. Using a method with lead as capture ion, acid phosphatase was found in lysosome-like vesicles and in the flagellar pocket. No alkaline adenosine triphosphatase (ATPase) was detectable by this method. Direct assay of p-nitrophenylphosphatase activity in homogenate fractions showed that acid phosphatase activity was strongly membrane-bound, but that activity at pH 9 was minimal in both soluble and particulate fractions. "Endogenous" ATPase activity was localized specifically and reproducibly in the mitochondrial membranes and under the plasma membrane of he flagellum. This nonenzymic reaction product could not be eradicated by glycerol extraction or glucose depletion. Unlike the membrane staining, which was manifest only after lead treatment, heat-resistant electron-dense material was found in the matrix of lysosomal vesicles in trypanosomes fixed in glutaraldehyde only and not subjected to further treatment with heavy metal reagents. X-ray emission analysis showed the presence of calcium and phosphorus, indicating that the matrix might have a phosphate storage function.  相似文献   

2.
A new method of preparing sealed vesicles from membrane fractions of pumpkin hypocotyls in ethanolamine-containing buffers was used to investigate the subcellular localization of H+-ATPase measured as nigericin-stimulated ATPase. In a fluorescence-quench assay, the H+ pump was directly demonstrated. The H+ pump was substrate-specific for Mg·ATP and 0.1 mM diethylstilbestrol completely prevented the development of a pH. The presence of unsupecific phosphatase hampered the detection of nigericin-stimulated ATPase. Unspecific phosphatases could be demonstrated by comparing the broad substrate specificity of the hydrolytic activities of the fractions with the clear preference for Mg·ATP as the substrate for the proton pump. Inhibitor studies showed that neither orthovanadate nor molybdate are absolutely specific for ATPase or acid phosphatase, respectively. Diethylstilbestrol seemed to be a specific inhibitor of ATPase activity in fractions containing nigericin-stimulated ATPase, but it stimulated acid phosphatase which tended to obscure its effect on ATPase activity. Nigericin-stimulated ATPase had its optimum at pH 6.0 and the nigericin effect was K+-dependent. The combination of valinomycin and carbonylcyanide m-chlorophenylhydrazone had a similar effect to nigericin, but singly these ionophores were much less stimulatory. After prolonged centrifugation on linear sucrose gradients, nigericin-stimulated ATPase correlated in dense fractions with plasma membrane markers but a part of it remained at the interphase. This lessdense part of the nigericin-stimulated ATPase could be derived from tonoplast vesicles because -mannosidase, an enzyme of the vacuolar sap, remained in the upper part of the gradient. Nigericinstimulated ATPase did not correlate with the mitochondrial marker, cytochrome c oxidase, whereas azide inhibition of ATPase activity did.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DES dethyltilbestrol  相似文献   

3.
Summary The enzymatic activity of bone matrix vesicles from parathyroidectomized rats was determined and compared to the activity of vesicles from sham operated and normal animals. The vesicles were isolated from the alveolar bone by collagenase digestion and differential centrifugation and further purified on a discontinuous sucrose density gradient. The amount of extractable protein and the activity of alkaline phosphatase, acid phosphatase, and ATPase in the vesicle fractions thus obtained did not differ significantly from the values characteristic of preparations from control rats. It may therefore be suggested that parathyroid hormone depletion and the associated hypocalcemia have no significant effect on the occurrence and phosphatase activity of bone matrix vesicles.  相似文献   

4.
Fractions composed primarily of cells (Fraction I), membrane fragments (Fraction II) and matrix vesicles (Fraction III) were isolated from chick epiphyseal cartilage. The characteristics of the alkaline phosphatase (EC 3.1.3.1), pyrophosphatase (EC 3.6.1.1) and ATPase (EC 3.6.1.3) activities in the matrix vesicle fraction were studied in detail. Mg-2-+ was not absolutely essential to any of the activities, but at low levels was stimulatory in all cases. Higher concentrations inhibited both pyrophosphatase and ATPase activities. Both the stimulatory and inhibitory effects were pH-dependent. Ca-2-+ stimulated all activities weakly in the absence of Mg-2-+. However, when Mg-2-+ was present, Ca-2-+ was slightly inhibitory. Thus, none of the activities appear to have a requirement for Ca-2-+, and hence would not seem to be involved with active Ca-2-+ transport in the typical manner. The distribution of alkaline phosphatase, pyrophosphatase, and Mg-2-+ ATPase activities among the various cartilage fractions was identical, and concentrated primarily in the matrix vesicles. Conversely, the highest level of (Na-+ + K-+)-ATPase activity was found in the cell fraction. All activites showed nearly identical sensitivities to levamisole (4 - 10-3 M) which caused nearly complete inhibition of alkaline phosphatase and pyrophosphatase. About 10-15% of the ATPase activity was levamisole-insensitive. The data are consistent with the concept that the Mg-2-+-ATPase and pyrophosphatase activities of matrix vesicles stem from one enzyme, namely, alkaline phosphatase.  相似文献   

5.
The ATPase of matrix vesicles is not stimulated by calcium ions, nor do the vesicles have any capacity to metabolize glucose. ADPase of high activity is also present; thus vesicles cannot be a component of the conventional ATP cycle, in which energy is stored by phosphorylating ADP and released by hydrolyzing the resultant ATP. These results do not support speculations that matrix vesicles might function by concentrating calcium via an energy-dependent ion transport system such as those found in the plasma membrane and the sarcoplasmic reticulum. Matrix vesicles' alkaline phosphatase can be solubilized by treatment with certain detergents: sodium dodecyl sulfate (12 mM and 16 mM), cetylpyridinium chloride (14mM), and deoxycholic acid (DOC, 14 MM). The first two detergents denature the enzyme during storage whereas DOC does not. DOC will also solubilize ATPase and inorganic pyrophosphatase. Yields of the three enzymes are 85-95%. Dialysis of a DOC digest of vesicles removes DOC and 43% of protein, and also causes much of the alkaline phosphatase to become particulate once again.  相似文献   

6.
A new technique for isolating fragmented plasma membranes from skeletal muscle has been developed that is based on gentle mechanical disruption of selected homogenate fractions. (Na+ + K+)-stimulated, Mg2+-dependent ATPase was used as an enzymatic marker for the plasma membrane, Ca2+-stimulated, Mg2+-dependent ATPase as a marker for sarcoplasmic reticulum, and succinate dehydrogenase for mitochondria. Cell segments in an amber low-speed (800 x g) pellet of a frog muscle homogenate were disrupted by repeated gentle shearing with a Polytron homogenizer. Sarcoplasmic reticulum was released into the low-speed supernatant, whereas most of the plasma membrane marker remained in a white, fluffy layer of the sediment, which contained sarcolemma and myofibrils. Additional gentle shearing of the white low-speed sediment extracted plasma membranes in a form that required centrifugation at 100,000 x g for pelleting. This pellet, the fragmented plasma membrane fraction, had a relatively high specific activity of (Na+ + K+)-stimulated ATPase compared with the other fractions, but it had essentially no Ca2+-stimulated ATPase activity and only a small percentage of the succinate dehydrogenase activity of the homogenate. Experimental evidence suggests that the fragmented plasma membrane fraction is derived from delicate transverse tubules rather than from the thicker, basement membrane-coated sarcolemmal sheath of muscle cells. Electron microscopy showed small vesicles lined bu a single thin membrane. Hydroxyproline, a characteristic constituent of collagen and basememt membrane, could not be detected in this fraction.  相似文献   

7.
An investigation was conducted into the isolation of plasma membrane vesicles from primary roots of corn (Zea mays L., WF9 × M14) by sucrose density gradient centrifugation. Identification of plasma membranes in cell fractions was by specific staining with the periodic-chromic-phosphotungstic acid procedure. Plasma membrane vesicles were rich in K+-stimulated ATPase activity at pH 6.5, and equilibrated in linear gradients of sucrose at a peak density of about 1.165 g/cc. It was necessary to remove mitochondria (equilibrium density of 1.18 g/cc) from the homogenate before density gradient centrifugation to minimize mitochondrial contamination of the plasma membrane fraction. Endoplasmic reticulum (NADH-cytochrome c reductase) and Golgi apparatus (latent IDPase) had equilibrium densities in sucrose of about 1.10 g/cc and 1.12 to 1.15 g/cc, respectively. A correlation (r = 0.975) was observed between K+-stimulated ATPase activity at pH 6.5 and the content of plasma membranes in various cell fractions. ATPase activity at pH 9 and cytochrome c oxidase activity were also correlated.  相似文献   

8.
A method for the isolation of brush-border membranes from newborn-rat kidney, employing centrifugation and free-flow electrophoresis, is described. The composition and purity of the preparation was assessed by determination of enzyme activities specific for various cellular membranes. Free-flow electrophoresis resolves the newborn-rat renal membrane suspension into two populations of alkaline phosphatase-enriched brush-border membranes, designated 'A' and 'B', with the A peak also showing activity of (Na+ + K+)-stimulated ATPase, the basolateral membrane marker enzyme, whereas those of the B peak were enriched 11-fold in alkaline phosphatase and substantially decreased in (Na+ + K+)-stimulated ATPase activity. Membranes in the A peak showed a 7-fold enrichment of alkaline phosphatase, and (Na+ + K+)-stimulated ATPase activity similar to that of the original homogenate. Proline uptake employed to assess osmotic dependency revealed 7% binding of proline to the B vesicles and 31% to the A vesicles. This contrasts with 60% proline binding to vesicles prepared by centrifugation alone. Unlike vesicles from adult animals, proline uptake by B vesicles did not show an Na+-stimulated overshoot, but did exhibit an Na+-gradient enhanced rate of early proline entry. proline entry.  相似文献   

9.
Lactate dehydrogenase isoenzymes are present in matrix vesicles   总被引:2,自引:0,他引:2  
Matrix vesicles were isolated from epiphyseal growth plates of young rabbits. Lactate dehydrogenase activity was detected in the isolated matrix vesicles only in the presence of detergents, suggesting that NADH, the cofactor for the assay, does not penetrate the membrane of matrix vesicles. In contrast, the activity of alkaline phosphatase, a marker enzyme of the outer surface of matrix vesicles, was detected in the matrix vesicles using p-nitrophenyl phosphate as the substrate both in the presence and absence of detergents. Lactate dehydrogenase activity was detected only in the cytosol of chondrocytes of the epiphyseal growth plates but not in other subcellular fractions, showing that lactate dehydrogenase is not from the plasma membrane and membranes of intracellular organelles of chondrocytes. The isolated matrix vesicles contained all five lactate dehydrogenase isoenzymes but did not possess other cytosolic enzymes. These results show that lactate dehydrogenase is located in the matrix vesicles and suggest the presence of a mechanism for the specific uptake of cytosolic lactate dehydrogenase and the possibility of enzymatic quantification of the matrix vesicles at various calcification sites.  相似文献   

10.
采用经蔗糖密度梯度法纯化的大豆 (GlycinemaxL .)下胚轴质膜微囊为材料 ,分析了胰蛋白酶处理对质膜H ATPase钒酸钠抑制效应的影响。实验结果显示 ,温和胰蛋白酶处理显著提高H ATPase的ATP水解活力。并且发现酶切处理降低了钒酸钠对ATPase的抑制效应 ,当钒酸钠浓度为 2mmol/L时 ,ATPase活力仅被抑制 5 3.49% ,而未经酶切的对照组则被抑制 6 4.13%。ATP水解动力学分析表明 ,胰蛋白酶酶切处理既不影响ATP水解的Km 值也不影响钒酸钠的抑制类型 ,酶切前后的Km 值都等于 0 .34mmol/L ,并且都属于反竞争抑制。以上结果显示胰蛋白酶酶切处理可能改变了磷酸酶结构域的结构而影响了钒酸钠的抑制效应 ,暗示C_末端调节着磷酸酶结构域的结构和功能  相似文献   

11.
The changes in inhibitory effect of vanadate on the plasma membrane H + ATPase were studied with mild trypsin treatment using plasma membrane vesicles purified from soybean (Glycine max L.)hypocotyles by sucrose gradient centrifugation. Results showed that under mild trypsin treatment the ATPase ATP hydrolysis activity was increased significantly. It was also found that the inhibitory effect of vandate was reduced after proteolysis. In the presence of 2 mmol/L vanadate, the ATP hydrolysis activity of the cleaved ATPase was inhibited by only 53.49%,while that of the un-cleaved ATPase was inhibited by 64.13%. Kinetic studies indicated that both the Km values and the inhibition type of vanadate were not affected by trypsin treatment. Upon proteolysis, Km remained as 0.34 mmol/L,while vanadate was still an uncompetitive inhibitor. Taking together, the structure and activity of the ATPase phosphatase domain were affected by trypsin treatment, implying that this domain might be regulated by the C-terminal end of the plasma membrane H+ ATPase.  相似文献   

12.
Renal epithelial function, proton flux and sodium stimulated proton flux, was observed in vesicles isolated from the brush border of the proximal tubule of Sockeye Salmon (Oncorhynchus nerka) during migration. Brush border membrane vesicles (BBMV) were isolated from the body kidney of Sockeye Salmon using aggregation/differential centrifugation techniques. Vesicle purity was tested using a series of epithelial and basal lateral markers including alkaline phosphatase, maltase, gamma-glutamyl transferase (GGTP), Mg(2+)-activated ATP-ase, Na(+)+K(+)-activated ATPase, and 5'-nucleotidase and the lysosomal marker acid phosphatase. An enrichment/depletion factor for each marker was determined by comparison of purified BBMV with kidney homogenate. Vesicles exhibit an enrichment factor for alkaline phosphatase, GGTP, maltase, Mg(2+)-activated ATP-ase, Na(+)+K(+)-activated ATPase, and 5'-nucleotidase. A depletion factor was observed for acid phosphatase. Vesicle integrity was tested by measuring the time course of proton flux in the presence of a pH gradient. Amiloride sensitive sodium stimulated proton flux was observed in these vesicles. The presence of sodium caused a saturable increase in the rate of proton flux, indicating the activity of a sodium/proton antiport protein in BBMV.  相似文献   

13.
Phosphomonoesterase activity was determined for a 115,000g pellet and soluble fractions resulting from a subcellular fractioning of a homogenate of larval Boophilus microplus. Both fractions showed maximum phosphatase activity at pH 5.5 and 10. Acid phosphatase (EC 3.1.3.2) activity was found to be greatest in the soluble fraction. When the reaction rate was plotted against homogenate concentration, the soluble acid phosphatase deviated from the linear relationship. For both fractions different thermostability patterns were obtained, inactlvation beginning for the alkaline phosphatase (EC 3.1.3.1) at 45–55 C. When the effect of substrate concentration on activity was studied, deviations from the typical hyperbolic behavior were observed. Homogenization of larvae with 5 mm EDTA buffer failed to yield a low-speed pellet with high alkaline phosphatase activity, as it is expected if absorptive structures sediment. Moreover, total alkaline phosphatase activity recovered by this method is significantly lower than activity recovered when homogenization is carried out without EDTA. Alternately, homogenization with 10 mM Tris buffer and 0.25 M sucrose gave 27,000g and 115,000g fractions with high phosphatase activity when fractioned by centrifugation. Alkaline treatment of the 115,000g fraction with 10 mM Tris buffer, pH 7.8, failed to separate endoplasmic reticulum contaminants without loss of phosphatase activity. When the 115,000g fraction was centrifuged in a sucrose density gradient, two activity peaks, coincident for both acid and alkaline phosphatases, were obtained. Antigenic analysis showed the existence of similar antigenic determinants in both peaks “immunologically” presented in different ways.  相似文献   

14.
Intact vacuoles were isolated from leaves of the CAM plant, Kalanchoë daigremontiana Hamet et Perr. Both ATPase and acid phosphatase activities were found in the vacuoles. Purified tonoplast vesicles showed only ATPase activity with a pH optimum of 8.0. This activity was Mg2+-dependent and KCI or NaCI caused a further stimulation. N,N'-dicyclohexylcarbodiimide, diethylstilbestrol and quercetin inhibited the ATPase almost completely at concentrations well below 1 m M. NaVo3, 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, oligomycin and NaN3 had little or no effect. Carbonyl cyanide m -chlorophenylhydrazone stimulated the ATPase about 40% at 5 × 10−4 M. The Km for ATP was found to be 0.55 m M. These results indicate that the ATPase found in the tonoplast membrane of Kalanchoë daigremontiana is qualitatively similar to that of other plant species.  相似文献   

15.
Spectrophotometric and cytochemical methods were used to investigate the localization and/or the sensitivity of phosphatase activities in aldehyde-fixed beet leaves and membrane fractions. The nonspecific acid phosphatase substrates, p-nitrophenyl phosphate and beta-glycerol phosphate, each exhibited unique spectrophotometric patterns of hydrolysis as a function of pH. Additionally, beta-glycerol phosphatase activity was primarily present on the tonoplast, whereas p-nitrophenyl phosphatase was present on the plasma membrane. Because of the unique pH response of each enzyme and their different localization, we conclude that they cannot be entirely "nonspecific." The spectrophotometric pattern of ATP hydrolysis differed from that of p-nitrophenol phosphate in that it decreased at pH 5.0-5.5 and was greatly inhibited by 10 mM sodium fluoride; however, both activities were on the plasma membrane. Therefore, we conclude that these activities represent either two enzymes or only one enzyme that differs in its ability to hydrolyze these two substrates. Generally, enzymatically produced lead deposits on the plasma membrane of non-vascular cells were as frequent and large as those on phloem cells; frequently, deposits on sieve element plasma membranes were relatively small. We therefore conclude that there is no evidence for the presence of relatively intense ATPase activity on the plasma membrane of phloem cells in beet leaf, in contrast to other species. Studies with membrane fractions indicated that formaldehyde could completely inhibit the inhibitor-sensitive phosphatase activities in mitochondrial and vacuolar fractions while preserving significant activity in the plasma membrane fraction.  相似文献   

16.
Corn ( Zea mays L.) plasma membranes from KI-washed microsomal fractions were further purified by isopycnic sucrose density centrifugation. An examination of separated fractions indicated that vesicles with nitrate-insensitive proton transport copurified with fractions containing vanadate-sensitive ATPase activity. The ATPase in purified plasma membrane was reconstituted into liposomes by a detergent dilution technique using deoxycholate. The reconstituted ATPase exhibited characteristics similar to those of the native enzyme. However, reconstituted preparations showed an enhanced sensitivity to vanadate, a diminished phosphatase activity and a high specific rate of ATP-dependent H+-transport. Apparent Ki values of reconstituted and native enzymes with respect to vanadate were 20 and 50 μ M , respectively; the KJ value of the H+-pumping of reconstituted ATPase was 30 μ M. The proton pumping of reconstituted vesicles could be discharged rapidly by p -trifluoromethoxyphenyl hydrazone (FCCP), hexokinase and vanadate. The hydrolysis of Mg-ATP by both native and reconstituted ATPases obeyed simple Michaelis-Menten plots with a Km between 0.5 and 0.6 m M. The reconstituted ATPase retained a pH profile similar to that of native enzyme with a maximum of pH 6.5.  相似文献   

17.
The purpose of this work was to isolate thymocyte plasma membranes at high yield and purity to study specific surface molecules in their structural context. A procedure was developed in which 92-95% of the cells were disrupted by homogenization in a dense viscous medium, while nuclei remained intact. Differential centrifugation of the homogenate was avoided; instead, only a brief (2 h) centrifugation at equilibrium-density of membrane components was used. Five fractions were obtained, three by flotation. Membrane-bound enzymatic activities indicated a 60-80% yield of plasma membranes in the three floated membrane fractions, which comprised 1.6% of the homogenate protein. Enrichment factors for three ectoenzymes, alkaline phosphatase, gamma-glutamyltransferase, and ouabain-sensitive adenosine triphosphatase were respectively, 70-74, and 40-50 in the two lightest fractions. Nuclear membranes were then isolated from the remaining whole nuclei and were found to be enriched in esterase and NADH-cytochrome c reductase. Plasma membranes and light nuclear membranes appeared as pure unit-membrane vesicles in thin sections and freeze-etching electron microscopy. Some aggregation of intramembranous particles occurred in plasma membrane vesicles.  相似文献   

18.
Baso-lateral membranes were isolated from the canine and porcine kidney cortex by several different methods currently in use. Sidedness of the isolated membrane vesicles was determined by procedures using 1. ouabain-sensitive (Na+K+)ATPase assays in the presence and in the absence of sodium dodecylsulfate or digitoxigenin plus monensin, 2. (Na+, K+, Mg2+)ATPase assays with valinomycin, 3. sialidase accessibility, and 4. binding of hydrophilic and lipophilic cardiac glycosides. The (Na+K+)ATPase activity in the membrane preparation was increased 10-fold of that found in the crude homogenate. Isolated membrane vesicles, prepared by different techniques, were all found to be overwhelmingly of right-side-out orientation;namely, right-side-out = 51-68%, inside-out = 4-13%, and unsealed vesicles = 26-42%. Results of sidedness determinations by different methods showed a good agreement. Thus, predominantly right-side-out oriented vesicles are formed during conventional isolation procedures for membranes of the kidney cortex.  相似文献   

19.
Plasma membrane vesicles were isolated from shoots of light-grown wheat seedlings by preparative free-flow electrophoresis, aqueous polymer two-phase partition or both. Plasma membrane vesicles were identified from staining of thin sections prepared for electron microscopy with phosphotungstic acid at low pH. The orientation of the plasma membrane vesicles was determined from latency and trypsin sensitivity of K+ Mg2+ATPase and of glucan synthase II, and concanavalin A-peroxidase binding and membrane asymmetry visualized by electron microscopy. The K+Mg2+ATPase and of glucan synthase II activities of plasma membrane fractions isolated by two-phase partition were latent and trypsin resistant. The vesicles bound concanavalin A-peroxidase strongly and exhibited a cytoplasmic side-in morphology. These fractions of cytoplasmic side-in vesicles were less than 10% contaminated by cytoplasmic side-out vesicles. By free-flow electrophoresis, two populations of vesicles which stained with phosphotungstic acid at low pH, designated D and E, were obtained. The vesicle population with the lower electrophoretic mobility, fraction E, contained plasma membrane vesicles with properties similar to those of the plasma membrane vesicles obtained after two-phase partition. The phosphotungstic-reactive vesicles with greater electrophoretic mobility, fraction D, were concanavalin A unreactive with the cytoplasmic membrane leaflet outwards. Less than 50% of the K+Mg2+-ATPase activity of this fraction was latent and trypsin sensitive. The vesicles of fraction D appeared to be preferentially cytoplasmic side-out. The electrophoretic mobilities of cytoplasmic side-out (non-latent glucan synthase II activity) and cytoplasmic side-in (latent glncan synthase II activity) plasma membrane vesicles isolated from a frozen and thawed wheat plasma membrane fraction, corresponded with the mobilities of fraction D and E, respectively, again showing that the plasma membrane vesicles with the lesser electrophoretic mobility were cytoplasmic side-in. The cytoplasmic side-in and cytoplasmic side-out vesicles therefore showed opposite eletrophoretic mobilities compared with a previous free-flow electrophoretic separation of soybean plasma membranes. The majorities of the plasma membrane vesicles of both fractions D and E entered the upper phase upon two-phase partition with the phase composition used for purification of wheat plasma membranes. Thus, neither electrophoretic mobility nor phase partitioning characteristics can be used as the only criteria for assignment of vesicle orientation.  相似文献   

20.
A cell fractionation procedure for obtaining membrane and flagellar fractions was developed using Trypanosoma cruzi epimastigote forms. The cells, swollen in an hypotonic medium, were disrupted in the presence of a nonionic detergent, and fractions were isolated by differential centrifugation. The flagellar fraction, pelleted in 10 min at 10,000g, was further purified on a sucrose gradient. The membrane fraction was obtained by centrifugation of the supernatant at 27,000g for 30 min. Electron microscopy of the isolated fractions demonstrated a high degree of purity of each fraction. The membrane fraction showed homogeneous vesicles with low ribosome content. In frozen-etched preparations, the distribution of intramembranous particles on the vesicles was similar to that of the plasma membrane of intact cells. Enzymatic assays indicated that the membrane and flagellar fractions had low contamination with mitochondria and lysosomes. 5′-Nucleotidase activity was not detected in the membrane fraction; Mg2+-dependent ATPase activity was slightly enhanced, although, the enzyme was not sensitive to Na+, K+, and Ca2+ ions. The membrane fraction showed about five times the adenylyl cyclase activity of the whole homogenate. Gel immunodiffusion revealed the whole antigen of T. cruzi extracted by formamide to be identical to the membrane fraction when both were tested against rabbit anti- T. cruzi (epimastigote) immune serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号