首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of proteoglycans/glycosaminoglycans on the thermal stability of in vivo assembled collagen fibrils have been examined. The shrinkage temperature of tendon collagen was found to be linearly dependent on the concentration of chondroitin sulphate in the surrounding fluid. Enzymic pretreatment of articular cartilage, to reduce its glycosaminoglycan content, resulted in decreased stability of the collagen present. The stability of the collagen in hyaluronidase-treated cartilage was found to be higher when measured in a solution of chondroitin sulphate (30 g/dl) than in buffer alone. The results of this study demonstrate that the proteoglycans stabilize collagen fibrils in tissues such as articular cartilage.  相似文献   

2.
Connective tissue proteoglycans undergo interaction with poly(L -arginine) when mixed in dilute neutral aqueous solution. Circular dichroism spectroscopy indicates that the polypeptide adopts the α-helical conformation rather than the extended coil form normally observed at neutral pH. The interactions of a series of proteoglycans with different protein and glycosaminoglycan contents have been compared. The arginine/disaccharide residue ratio at maximum interaction appears to be constant with varying protein content of the proteoglycans that contain chondroitin 4-sulfate. The thermal stability of the proteoglycan interaction is the same as for the component polysaccharide. Thus in terms of the strength of interaction with homopolypeptides, the properties of proteoglycan and the component glycosaminoglycans are the same, and this is likely also to be the case for collagen–proteoglycan systems. The interactions of keratan sulfate-2 have also been investigated. These are similar but have much lower thermal stability than corneal keratan sulfate-1. The results are consistent with the weak interaction of the keratan sulfate-2 component of bovine nasal septum proteoglycan.  相似文献   

3.
Platelet heparin neutralizing activity (platelet factor 4) is released from human blood platelets by thrombin in the form of a high molecular weight proteoglycan-platelet factor 4 complex. This complex was partially purified by isoelectric precipitation and gel filtration. At high ionic strength (I = 0.75) the complex dissociates into the active component (mol. wt 29000) and the proteoglycan carrier. The components were separated by gel filtration and the proteoglycan further purified by Na2SO4 treatment. The molecular weight of the purified carrier was 59000. The carbohydrate moieties of the proteoglycan isolated after papain digestion and ion-echange chromatography were shown to consist of chondroitin 4-sulfate by chemical, physical and electrophoretic analysis. The multichain proteoglycan consists of four chondroitin 4-sulfate chains (mol. wt 12000) in covalent linkage to a single polypeptide. The molecular weight (350000) of the fully saturated proteoglycan carrier suggests that 4 moles of platelet factor 4 are bound per mole of proteoglycan and that the carrier occurs in the form of a dimer consisting of 8 moles of platelet factor 4 and 2 moles of proteoglycan. The isolated chondroitin 4-sulfate moieties combine with platelet factor 4 at a binding ratio of one mole of platelet factor 4 per carbohydrate chain. Heparin completely displaces platelet factor 4 from both the saturated proteoglycan and chondroitin 4-sulfate complexes. Heparitin sulfate, dermatan sulfate and chondroitin 6-sulfate also combine stoichiometrically with platelet factor 4 and are displaced by equimolar amounts of heparin. Hyaluronic acid did not combine with platelet factor 4. The relative binding capacities of glycosaminoglycans for platelet factor 4 were shown to be: heparin (100), heparitin sulfate (75), chondroitin 4-sulfate (50), dermatan sulfate (50), chondroitin 6-sulfate (50), and hyaluronic acid (o). Chondroitin 4-sulfate was identified as the major glycosaminoglycan in all platelet subcellular fractions; in addition, the soluble fraction contains a minor amount of hyaluronic acid. Subcellular distribution studies revealed that 55% of both the proteoglycan carrier and platelet factor 4 activity were localized in the “granule rich” fraction. This data together with the low recovery of both these components in the membrane fraction, suggest that they occur together as a complex within specific granules and are released in this form under physiologic conditions.  相似文献   

4.
Collagen XIV, a fibril-associated collagen with interrupted triple helices, is expressed in differentiated soft connective tissues and in cartilage. However, a cellular receptor for this protein has not been identified. Here we show that human placental collagen XIV, isolated by a mild and simple two-step method, serves as adhesive protein for a variety of mesenchymal and some epithelial cells. Cell adhesion could be inhibited by preincubation of the collagen XIV substrate with heparin or with the chondroitin/dermatan sulfate proteoglycan decorin and by pretreatment of cells with chondroitinase ABC or heparinase III, suggesting a cell membrane proteoglycan as receptor. Affinity chromatography of125I-labeled fibroblast cell surface proteins on collagen XIV–Sepharose yielded a chondroitin/dermatan sulfate proteoglycan with a molecular mass of 97–105 kDa after chondroitinase ABC digestion and of 60–70 kDa after further treatment withN-glycosidase F. The eluates contained also some high-molecular-weight material that was susceptible to digestion with heparinase but no detectable integrins. Immunoprecipitation with a specific monoclonal antibody identified the prominent chondroitin/dermatan sulfate proteoglycan as a member of the CD44 family. The interaction between collagen XIV and cells appears to be finely tuned, since matrix-associated glycosaminoglycans, and particularly proteoglycans like decorin, could compete with cells for the binding site(s) on collagen XIV under physiological conditions.  相似文献   

5.
35S-labelled chondroitin sulfate proteoglycans isolated from conditioned media of cultured human monocytes (day 1in vitro) and monocyte-derived macrophages (day 6in vitro) were chromatographed on columns of immobilized fibronectin and collagen, respectively. The elution profiles prior to and after alkali treatment were compared with those of standards chondroitin 4-sulfate and chondroitin sulfate E and heparin. The day 635S-proteoglycans have a higher sulfate density than the day 1 species, but this difference did not affect the elution profiles after chromatography on collagen-Sepharose, whereas the day 6 proteoglycans bound more firmly than the day 1 fraction to fibronectin-Sepharose. The elution patterns obtained for these distinct proteoglycans closely resembled those of heparin and oversulfated chondroitin sulfate E standards, and clearly demonstrated the importance of sulfate density both for the affinity to fibronectin and collagen. Neither day 1 nor day 635S-proteoglycans were found to interact with hyaluronate.Abbreviations used CSPG chondroitin sulfate proteoglycan - GAG glycosaminoglycan - CS chondroitin sulfate - CS-E chondroitin 4,6 disulfate - MDM monocyte-derived macrophages  相似文献   

6.
The effect of retinoic acid on glycosaminoglycan biosynthesis was investigated in rat costal cartilage chondrocytes in vitro. At levels of 10?9 to 10?8m retinoic acid, 35SO4 uptake into glycosaminoglycans was reduced 50%. At these low levels of retinoic acid there was no evidence of lysosomal enzyme release. The results are explained best in terms of modification of glycosaminoglycan synthesis, rather than accelerated degradation. Retinoic acid selectively modified the incorporation of 35SO4 or [14C]glucosamine into individual glycosaminoglycans fractions under the conditions studied. The relative incorporation of radiolabeled precursor into heparan sulfate (and/or) heparin increased three- to fourfold. The relative incorporation of radiolabeled precursor remained constant for chondroitin 6-sulfate, whereas incorporation into chondroitin 4-sulfate and chondroitin (and/or) hyaluronic acid decreased. Under the conditions studied, retinoic acid did not appear to be cytotoxic and did exhibit selective control over glycosaminoglycan biosynthesis. It is suggested that the decreased incorporation of 35SO4 into glycosaminoglycans at hypervitaminosis A levels of retinol may be accounted for by the presence of low levels of retinoic acid, a naturally occurring metabolite.  相似文献   

7.
Parellel toin vitro differentiation of human monocytes into macrophage-like cells, the cells change their synthesis of glycosaminoglycans from chondroitin 4-sulfate to highly sulfated chondroitin sulfate, containing 4,6-disulfatedN-acetylgalactosamine units [Kolsetet al. (1983) Biochem J 210:661–67]. After exposure of monocyte cultures to [35S]sulfate for 24h either from the onset of cultivation, prior to differentiation, or from day 4, after differentiation,35S-macromolecules from medium and cell-layer were isolated and characterized. The cell-layer of day 5 cultures contained both proteoglycans and free polysaccharide chains, while the35S-macromolecules present in the cell-layer of day 1 cultures and in medium of both monocytes and macrophage-like cells were almost exclusively of proteoglycan nature. Proteoglycans produced by macrophage-like cells were of larger size than the monocyte proteoglycans, most likely due to an increased polysaccharide chain length. These proteoglycans, in contrast to the monocyte-derived species, also showed affinity for fibronectin at physiological ionic strength.  相似文献   

8.
《Life sciences》1997,60(12):PL201-PL206
Here, we report investigations about the direct effect of glycosaminoglycans, such as dermatan sulfate, chondroitin 4- and 6-sulfate upon cAMP-dependent protein kinase activity. The results indicate that glycosaminoglycans strongly influence the phosphorylation activity of this enzyme against histone type IIa and [Val6,Ala7]-kemptide. While chondroitin 4-sulfate and dermatan sulfate exhibit inhibitory effects, chondroitin 6-sulfate shows a stimulating effect. In addition, the chondroitin 6-sulfate is also able to reduce the chondroitin 4-sulfate and dermatan sulfate specific inhibition.  相似文献   

9.
The role of the non-helical regions of the collagen molecule in fibrillogenesis has been investigated by comparing the kinetics of fibril formation of pepsin-treated acid-soluble collagen, acid-soluble collagen and mixtures of the two and by comparison of the thermal stabilities of the fibrils formed. The acid-soluble collagen was found to aggregate more rapidly than the pepsin-treated collagen under physiological conditions of pH and ionic strength. Variations in ionic strength, at physiological pH, were found to have differing effects on the aggregation of these two forms of soluble collagen. Fibrils formed from the pepsinized-collagen had a lower thermal stability tha n those formed from the intact collagen. The behavior observed with mixtures of acid-soluble and pepsin-treated collagens was found to be quantitatively consistent with the pepsinized collagen being able to utilize the nuclei formed by the acid-soluble collagen for subsequent growth. However, the use of the acid-soluble nuclei by the pepsinized collagen for growth did not enhance its rate of precipitation during the growth phase, nor did it enhance the thermal stability of the fibrils formed from the pepsinized collagen.  相似文献   

10.
Current wisdom on intermolecular interactions in the extracellular matrix assumes that small proteoglycans bind collagen fibrils on highly specific sites via their protein core, while their carbohydrate chains interact with each other in the interfibrillar space. The present study used high-resolution scanning electron microscopy to analyse the interaction of two small leucine-rich proteoglycans and several glycosaminoglycan chains with type I collagen fibrils obtained in vitro in a controlled, cell-free environment. Our results show that most ligands directly influence the collagen fibril size and shape, and their aggregation into thicker bundles. All chondroitin sulphate/dermatan sulphate glycosaminoglycans we tested, except chondroitin 4-sulphate, bound to the fibril surface in a highly specific way and, even in the absence of any protein core, formed regular, periodic interfibrillar links resembling those of the intact proteoglycan. Only intact decorin, however, was able to organize collagen fibrils into fibres compact enough to mimic in vitro the superfibrillar organization of natural tissues. Our data indicate that multiple interaction patterns may exist in vivo, may explain why decorin- or biglycan-knockout organisms show milder effects than can be expected, and may lead to the development of better, simpler engineered biomaterials.  相似文献   

11.
Proteoglycan complex extracted from embryonic cartilage (chondromucoprotein) with 4.0 M guanidinium chloride greatly stimulates in vitro somite chondrogenesis. In the presence of exogenous chondromucoprotein (CMP) which consists predominantly of proteochondroitin sulfate, there is a large increase in the amount of differentiating cartilage which can be detected visually in somite explants. There is a 2–3-fold increase in the amount of sulfated glycosaminoglycans (including chondroitin 4- and 6-sulfate) accumulated by somite explants supplied with exogenous CMP complex. These results are of potential significance, since during the period of interaction between the notochord or spinal cord and somitic mesoderm, the notochord and spinal cord synthesize and secrete proteoglycan.  相似文献   

12.
A method for the microassay in vitro of lipoprotein: proteoglycan interactions is described. The wells of a plastic 96-well microtitration plate are coated with low density lipoprotein. A limiting quantity of biotin-conjugated proteoglycan is allowed to bind to each coated well, and the amount of the latter retained in wells is estimated spectrophotometrically through subsequent binding of alkaline phosphatase-conjugated avidin. Many of the incubation parameters (e.g., time, pH, salt concentration, divalent cations), which influence the extent of binding of biotin-conjugated proteoglycan, have been studied and optimized. The effect upon binding of introducing different levels of proteoglycans or lipoproteins at the interaction step can be measured readily. Thus, the orders of increasing relative binding affinities were found to be high density lipoprotein less than Lipoprotein (a) less than low density lipoprotein; rat chondrosarcoma proteoglycan less than bovine nasal cartilage proteoglycan less than human aorta proteoglycan; chondroitin 4-sulfate less than chondroitin 6-sulfate less than dermatan sulfate for lipoproteins, proteoglycans, and glycosaminoglycans, respectively.  相似文献   

13.
Monolayer cell cultures and cartilage tissue fragments have been used to examine the effects of hydrostatic fluid pressure (HFP) on the anabolic and catabolic functions of chondrocytes. In this study, bovine articular chondrocytes (bACs) were grown in porous three-dimensional (3-D) collagen sponges, to which constant or cyclic (0.015 Hz) HFP was applied at 2.8 MPa for up to 15 days. The effects of HFP were evaluated histologically, immunohistochemically, and by quantitative biochemical measures. Metachromatic matrix accumulated around the cells within the collagen sponges during the culture period. There was intense intracellular, pericellular, and extracellular immunoreactivity for collagen type II throughout the sponges in all groups. The incorporation of [(35)S]-sulfate into glycosaminoglycans (GAGs) was 1.3-fold greater with constant HFP and 1.4-fold greater with cyclic HFP than in the control at day 5 (P < 0.05). At day 15, the accumulation of sulfated-GAG was 3.1-fold greater with constant HFP and 2.7-fold with cyclic HFP than the control (0.01). Quantitative immunochemical analysis of the matrix showed significantly greater accumulation of chondroitin 4-sulfate proteoglycan (C 4-S PG), keratan sulfate proteoglycan (KS PG), and chondroitin proteoglycan (chondroitin PG) than the control (P < 0.01). With this novel HFP culture system, 2.8 MPa HFP stimulated synthesis of cartilage-specific matrix components in chondrocytes cultured in porous 3-D collagen sponges.  相似文献   

14.
Interaction between cartilage proteoglycan and the collagen(s) composed of 1 alpha, 2 alpha, and 3 alpha chains was studied in vitro. Most of the collagen was insoluble under the conditions of assay (0.15 M NaCl, 0.008 M phosphate buffer, pH 7.4; 4 degrees C) and was in the form of fibrils 20 nm in diameter or thinner. The larger fibrils had 60-70 nm periodicity, characteristic of native collagens. Proteoglycan monomers which had been labeled by incubating cartilage slices in vitro with Na2 35SO4 were used to assay the interaction. The insoluble collagen fraction bound proteoglycan from solution. At proteoglycan:collagen ratios lower than 1:2, binding was rapid and linear, and the dissociation constant was 1.7 X 10(-9) M. At higher proteoglycan:collagen ratios, more proteoglycan was bound, but at a slower rate. Binding of proteoglycan to collagen did not require fibrils, since soluble 1 alpha, 2 alpha, and 3 alpha containing collagen also bound to proteoglycan and formed an insoluble complex. Denatured collagens did not bind proteoglycan or compete for binding with normal collagen. Optimum binding occurred with intact proteoglycan, but proteoglycan which had been treated with protease was also bound at low levels. Both protease-treated proteoglycan and free chondroitin sulfate competed with intact proteoglycan in the binding assays, but neither chondroitinase ABC-treated proteoglycan nor the oligosaccharides produced by digestion of chondroitin sulfate with testicular hyaluronidase altered the binding of proteoglycan to collagen. Hyaluronic acid did not compete with radioactive proteoglycan, but heparin and dextran sulfate were extremely effective inhibitors of binding. These data suggest a relatively nonspecific interaction between sulfated polyanions and 1 alpha, 2 alpha, and 3 alpha containing collagens. However, given the location of these collagens near the chondrocyte surface, the interaction of fibrillar 1 alpha, 2 alpha, 3 alpha collagen with proteoglycan is likely to occur and to be of biological importance.  相似文献   

15.
The treatment of chondroitin sulfate isolated from cultured B16 mouse melanoma cells with 0.04 M HCl at 100°C for 90 min released up to 45% of O-sulfate residues as free inorganic sulfate. In addition to the release of inorganic sulfate, extensive degradation of this polysaccharide as well as of cartilage chondroitin sulfate, pig rib cartilage proteoglycan, heparin and hyaluronic acid was also evident under these conditions. The above hydrolysis conditions are used for characterizing 35S-labeled heparan sulfates synthesized by cultured cells and to calculate ratio of N- and O-sulfates in these molecules. Our results suggest that caution in necessary in interpreting the results of mild acid hydrolysis of glycosaminoglycans.  相似文献   

16.
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes.  相似文献   

17.
A high molecular weight chondroitin sulfate proteoglycan (Mr 240,000) is released from platelet surface during aggregation induced by several pharmacological agents. Some details on the structure of this compound are reported. beta-Elimination with alkali and borohydride produces chondroitin sulfate chains with a molecular weight of 40,000. The combined results indicate a proteoglycan molecule containing 5-6 chondroitin sulfate chains and a protein core rich in serine and glycine residues. Degradation with chondroitinase AC shows that a 4-sulfated disaccharide is the only disaccharide released from this chondroitin sulfate, characterizing it as a chondroitin 4-sulfate homopolymer. It is shown that this proteoglycan inhibits the aggregation of platelets induced by ADP. Analysis of the sulfated glycosaminoglycans not released during aggregation revealed the presence of a heparan sulfate in the platelets. Degradation by heparitinases I and II yielded the four disaccharide units of heparan sulfates: N,O-disulfated disaccharide, N-sulfated disaccharide, N-acetylated 6-sulfated disaccharide, and N-acetylated disaccharide. The possible role of the sulfated glycosaminoglycans on cell-cell interaction is discussed in view of the present findings.  相似文献   

18.
A model for the electrostatic properties of hydrated collagen fibrils, based on the concept of a “penetrable” protein, has been evaluated through studies of collagen fibrils that had been chemically modified to change their electrostatic properties,. A value of 0.28 ± 0.07 ml/g was found for the intrafibrillar space sterically inaccessible to a molecule that had an equivalent spherical radius of 4.5 Å. The net intrinsic charge on reconstituted collagen is +14 mol/mol under physiological conditions, but decreases, at constant pH, with ionic strength. A value of 7.1 for the pK of the histidine and α-amino groups in reconstituted collagen was obtained through the application of the electrostatic model to this effect. The values obtained for calcium binding parameters for collagen fibrils, under solution conditions in which the nonspecific electrostatic properties of collagen fibrils were eliminated (3–5 M tetramethyl ammonium chloride), were in agreement with values obtained in 0.16 M NaCl solutions calculated through the use of the electrostatic theory. These are 0.73 ± 0.23 and 56.2 ± 12.3 sites per molecule with intrinsic association constants of 1101 ± 386 and 21.4 ± 5.2 M?1, respectively. The model also predicts that an average 4-mV potential difference exists between the reconstituted collagen fibrils and physiological solutions, and that collagen fibrils under such conditions have piezoelectriclike properties. The pattern of interaction of ions with collagen fibrils is such that an allosteric mechanism for the catalytic step in the mineralization of collagen is a possibility.  相似文献   

19.
W D Comper  A Veis 《Biopolymers》1977,16(10):2133-2142
Heat precipitation fibril formation in collagen solutions depends upon the prior thermal history of the solution. Collagen solutions were heat precipitated to various extents at 30°C, cooled, and then brought to a second precipitation. Kinetic analysis of the secondary precipitation demonstrated that only the nucleation phase of the precipitation was affected, not the fibril growth phase. Thermal history, or memory, is thus related to the formation of low-temperature-stable nuclei. A range of nuclei sizes is evident, supporting the concept of a homogeneous nucleation process. Schiffs base formation and establishment of cross-linkages play no role in the in vitro nucleation: thiosemicarbazide treated collagen behaves identically to untreated collagen in kinetics of assembly to fibrils. Low-temperature-stable nuclei formed at neutral pH are dissociated in the cold in acetic acid at pH 4. Pronase and pepsin susceptible molecular end regions are important in establishing the low-temperature-stable nuclei. Pronase treatment completely abolishes the acquisition of memory of prior thermal history in collagen solutions. We speculate that biological control mechanisms for fibril formation in vivo relate to specific interactions between non-helical, enzyme susceptible regions on collagen molecules.  相似文献   

20.
W D Comper  A Veis 《Biopolymers》1977,16(10):2113-2131
The formation of collagen fibrils from soluble monomers and aggregates by thermal gelation at neutral pH can be divided into two distinct stages: a nucleation phase and a growth phase. Turbidity studies of the kinetics of the precipitation reaction show that the lag-phase time or nucleation reaction time, tl, is markedly temperature dependent while the growth reaction time is temperature independent. The activation energy of the nucleation reaction is essentially constant over the temperature range studied. In monitoring the nucleation-phase reaction by various physicochemical techniques, including viscosity, sedimentation equilibrium, and light scattering, no evidence for the formation of aggregates was observed. Enrichment of the initial collagen solution with aggregates accelerates nucleation, but de novo nuclei formation is still required even in highly aggregated collagen preparations. Removal of pepsin and pronase susceptible peptides lengthens the nucleation reaction time and increases the sensitivity of the rate of nuclei formation to changes in ionic strength. Electron microscope studies show the fibrils formed from the protease-treated collagen to be less well organized. With pepsin-treated collagen, subfibrils and obliquely striated fibrils are seen, showing that while microfibrils are formed interactions between them are modulated by the enzyme susceptible peptides in the same way that these regions modulate nuclei assembly. It appears that pepsin and pronase susceptible peptide regions of collagen play a more prominent role in the in vitro assembly of collagen molecules to form D-stagger nuclei and fibrils than do ionic interactions between helical molecular regions. A mechanism of nucleation of collagen fibrillogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号