首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of phosphate (Pi) supply on growth rate and tissue phosphorus content of juvenile Macrocystis pyrifera (L.) C. Ag. sporophytes was examined. Sporophytes were batch cultured in aquaria with flowing recirculated seawater enriched by 30 μM nitrate. Each aquarium was supplemented with a different seawater Pi concentration, 0, 0.3, 1, 2, 3, and 6 μM. Sporophyte mean specific growth rates declined with time in all cultures presumably due to the normal developmental decrease in the proportion of meristematic tissue of each plant. Growth rate declines were more pronounced in cultures that were nutrient limited. Sporophyte growth was P-limited after two-week exposure to Pi less than 1 μM, corresponding to a tissue P concentration of less than 0.20% dry weight. Plants cultured at 6 μM Pi contained tissue P levels of 0.53% dry weight after three weeks. Luxury consumption and storage of P occurred.  相似文献   

3.
Photosynthetic rates measured in protoplasts isolated from the broivn alga Macrocystis pyrifera (L.) Ag. were compared to those for intact tissue. Both 14C incorporation and O2 evolution gave similar rates of light-saturated protoplast photosynthesis (approximately 0.4 mmol-g chl a?1· min?1). Light saturated photosynthetic rates (Pmax) and light harvesting efficiencies (α) of protoplasts were approximately 40% those of intact tissue. In contrast, protoplasts had a greater substrate affinity for photosynthetic HCO3 uptake (lower K0.5) than intact tissue (0.87 and 4.1 mMolar, respectively), presumably because of a reduction in the thickness of the unstirred boundary layer in the absence of the cell wall. Overall, the data suggest that protoplasts isolated from Macrocystis pyrifera are of valur in the study of photosynthesis. However, experiments with intact tissue are necessary as controls to aid interpretation of protoplast data.  相似文献   

4.
Three geographically isolated populations of the giant kelp, Macrocystis pyrifera (L.) C. Ag., were examined for responses to nitrate availability in batch culture experiments using juvenile sporophytes reared from spores in the laboratory. Although maximum rates of nitrate-saturated growth were similar among groups, there were significant quantitative differences in the response to nitrate limitation that can be related to natural patterns of nutrient availability at these sites. Plants from Santa Catalina Island (most oligotrophic) achieved maximum growth rates at ambient nitrate concentrations that were lower than those for plants from Monterey Bay, California (most eutrophic), or Refugio State Beach (near Santa Barbara, California). Tissue nitrogen and amino acid concentrations were highest in plants cultured from Santa Catalina Island populations at all external nitrate concentrations, suggesting that differences in nitrate requirements for growth may reflect the efficiency of nitrate uptake and assimilation at subsaturating nitrate concentrations. Given the different physical environments from which these plants came, the data suggest that geographically isolated populations of M. pyrifera have undergone genetic divergence that can be explained by ecotypic adaptation to unique habitat conditions at these sites.  相似文献   

5.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

6.
Polyclonal rabbit antibodies to cell wall components were produced against gametophytes of the giant kelp Macrocystis pyrifera (Linnaeus) C. Agardh. These antibodies were found to react with carbohydrates extracted from M. pyrifera and Pterygophora californica Ruprecht by carbohydrate based enzyme immunoassay (EIA). The antibodies reacted with carbohydrates from both species. After affinity purification on a column with M. pyrifera carbohydrate coupled to AH-Sepharose, the eluted antibody was specific for M. pyrifera carbohydrate with little cross reactivity to P. californica carbohydrate in the EIA test. In experiments carried out to characterize the antigenic specificity of unfractionated antibody using commercially prepared carbohydrates in the EIA, the antibodies were shown to react primarily with fucoidan and to a lesser degree, alginate. The unfractionated antibody was also shown to bind to proteins from both M. pyrifera and P. californica. These results indicate that species specific carbohydrate determinants may be present in the kelp cell wall.  相似文献   

7.
Measurements of net photosynthesis (PS, O2 evolution), dark respiration (R, O2 consumption), and light and dark carbon fixation (14C) were conducted on whole blades, isolated blade discs, sporophylls, apical scimitars and representative portions of stipe and holdfast of the giant kelp Macrocystis pyrifera L.C. Ag. On a dry weight basis, highest net PS rates were observed in apical scimitar segments and whole blades (3.81 and 3.07 mgC · g dry wt?1· h?1, respectively), followed by sporophylls (1.42 mgC·g dry wt?1· h?1) and stipe segments (0.15 mgC·g dry wt?1· h?1). No PS capacity was observed in holdfast material. Respiration rates showed similar ranking ranging from 1.22 mgC·g dry wt?1·h?1 for apical scimitar to 0.18–0.22 mgC·g dry wt?1· h?1 for holdfast material. Considerable within blade variability in both PS and R was also found. Steepest PS and R gradients on both an areal and weight basis were found within immature blades followed by senescent and mature blade material. Highest net PS rates were associated with the blade tips ranging from 3.08 (mature blades) to 10.3 mgC·dry wt?1·h?1 (immature blades). Highest rates of R generally occurred towards the basal portions of blades and ranged from 1.03–1.80 mgC·g dry wt?1·h?1 for immature blades. The variability within and between blades was high, with coefficients of variation approaching 50%. The observed patterns can be related to the decreasing proportionment of photosynthetic tissue and increasing proportionment of structural tissue as occurs from the blade tip to the blade base. Rates of light carbon fixation (LCF) revealed longitudinal profiles similar to oxygen measurements for the different blade types, with the absolute rates being slightly lower. Patterns of dark carbon fixation (DCF) were less easily interpreted. Highest rates of DCF (0.04–0.06 mgC·g dry wt?1·h?1) occurred at the basal portions of immature and senescent blades. Longitudinal profiles of total chlorophyll (a + c) on both an areal and weight basis were very similar to the profiles of PS. Normalized to chlorophyll a, PS displayed an unusual longitudinal profile in immature tissue; however, such profiles for mature and senescent tissues were similar to those for PS on an areal basis. It was demonstrated that it is difficult, if not impossible, to select single tissue discs that are representative of whole blades. The metabolic longitudinal profiles reveal a characteristic developmental pattern; the previous working definitions of immature, mature, and senescent blades, based on morphology and frond position thus have a physiological basis.  相似文献   

8.
NH4+ and NO3? uptake were measured by continuous sampling with an autoanalyzer. For Hypnea musciformis (Wulfen) Lamouroux, NO3?up take followed saturable kinetics (K2=4.9 μg-at N t?1, Vmax= 2.85 μg- at N, g(wet)?1. h?1. The ammonium uptake data fit a trucatd hyperbola, i.e., saturation was not reach at the concentrations used. NO3? uptake was reduced one-half in the presence of NH4+, but presence of NO3? had no effect on NH4+ uptake. Darkness reduced both NO3? and NH4+ uptake by one-third to one-half. For Macrocystis pyrufera (L) C. Agardh, NO3? uptake followed saturable kinetices: K2=13.1 μg-at N. l?1. Vmax=3.05 μg-at N. g(wet)?1. h?1.NH4+ uptake showed saturable kinetics at concentration below 22 μg-at N l -1 (K2=5.3 μg-at N.1–1, Vmax= 2.38 μg-at N G (wet)?1.h?1: at higher concentration uptake increased lincarly with concentrations. NO3?and NH4+ were taken up simulataneously: presence of one form did not affect uptake of the other.  相似文献   

9.
A quantitative accounting of the solids in the sieve tube sap from Macrocystis pyrifera (L.) e. Ag. was performed. The major organic compounds (mannitol, amino acids, and protein) and inorganic cations (K+, Na+, Mg2+ and Ca2+) were present near previously reported levels. The anions, until now unreported (except for iodide), included chloride as the major inorganic ion, bromide, phosphate, nitrate, and bicarbonate as the major inorganic carbon species. Sulfate and ammonium were below the detection limits of 1.5 ppm and 2 ppm, respectively. The elements B and As were also present although their speciation was not determined.  相似文献   

10.
Organisms occurring in environments subject to severe disturbance and/or periods of poor environmental quality that result in severe adult mortality can survive these periods by relying on alternate life stages that delay their development in a resistant state until conditions improve. In the northeast Pacific, the forest‐forming giant kelp Macrocystis pyrifera (L.) C. Agardh periodically experiences widespread adult mortality during extended periods of extremely low nutrients and high temperatures, such as those associated with El Niño. Recovery following these periods is hypothesized to occur from microscopic life stages that delay their development until the return of favorable conditions. In the laboratory, we experimentally examined the environmental conditions responsible for regulating delayed development of the microscopic stages of M. pyrifera from Southern California, USA. Nutrients controlled the delay and resumption of gametophyte growth and reproduction, perhaps linked to the large fluctuations in nutrients occurring seasonally and interannually in this region. Although growth of gametophytes proceeded in the virtual absence of nitrate, both nitrate and other trace nutrients were necessary for gametogenesis. Upon exposure to elevated nutrients, delayed gametophytes produced sporophytes more quickly (5–20 d) and at smaller sizes (10–200 μm) than gametophytes that had never been delayed (18–80 d, 80–400 μm, respectively), reducing negative density‐dependent effects. This finding demonstrates that delayed gametophytes of M. pyrifera rapidly utilize increased resources to consistently produce sporophytes. Further work is needed to assess their potential role in population recovery following periods of poor environmental quality.  相似文献   

11.
The nitrate uptake capacity of mature blade tissue of the giant kelp, Macrocystis pyrifera (L.) C. Ag., was examined as a function of the availability of light and nitrate. Time course measurements indicated that nitrate uptake rate, as measured by the incorporation of 15N, was significantly increased by N starvation. The response was linear over the first hour of exposure regardless of the N status of the tissue indicating that surge uptake was not responsible for the increase. The Michaelis-Menten parameters Vmax and Ks, however, were not significantly changed by either growth nitrate concentration or growth irradiance as a result of high variability among blades. Similarly, the initial slope (α) of the nitrate uptake kinetics curves was unaffected. Concentration of photosynthetic pigments increased in response to increased nitrate availability but not to increased growth irradiance. Time course and pigment data demonstrated that mature blade tissue responds to increased N availability by decreasing its capacity to take up nitrate and by increasing its investment in photosynthetic pigments, perhaps for N storage or enhanced light-harvesting capabilities and the increase in reducing power available for N assimilation. This study provides evidence for a dynamic regulatory system that responds to changes in nitrate availability in an integrated manner.  相似文献   

12.
Solar ultraviolet radiation (UVA + UVB) impairs photosynthesis in marine algae. Canopy blades of the giant kelp Macrocystis pyrifera (L.) C. Agardh are exposed to high levels of solar UV in the field. To determine the effects of UV radiation on photosynthesis in the giant kelp and to identify sites of UV damage, O2 evolution, reaction center organization, light harvesting, and energy transfer efficiency were measured in canopy blades that had been exposed to elevated levels of UV in the laboratory. UV treatment reduced both the light-saturated rate and the light-limited rate of photosynthesis by 50% but produced no significant change in the rate of dark respiration. A significant impairment of photosystem II (PSII) reaction center function was observed, suggesting that PSII is a major site of damage in chromophytes. Reduced quantum efficiency of photosynthesis and loss of energy transfer from light-harvesting pigments (fucoxanthin, chlorophyll a, and chlorophyll c) to PSII indicate that the major light-harvesting complex of M. pyrifera, the fucoxanthin-chlorophyll protein complex (FCPC), was another site of UV damage. These measures provide the first evidence of a direct effect of UV radiation on specific sites in the photosynthetic apparatus of chromophytes and indicate that in situ fluorescence excitation analysis may be a simple means to detect UV stress in algae.  相似文献   

13.
Laboratory studies were used to examine how variation in the density of spore settlement influences gametophyte growth, reproduction, and subsequent sporophyte production in the kelps Pterygophora californica Ruprecht and Macrocystis pyrifera (L.) C. Ag. In still (non-aerated) cultures, egg maturation in both species was delayed when spores were seeded at densities 300 · mm?2. Although the density at which this inhibition was first observed was similar for both species, the age at which their eggs matured was not. P. californica females reached sexual maturity an average of 4 days (or ~ 30%) sooner than did M, pyrifera. As observed previously in field experiments, per capita sporophyte production was negatively density dependent for both species when seeded at spore densities of 10 · mm?2. Total sporophyte production (i.e. number · cm?2) for both species, however, was greatest at intermediate densities of spore settlement (~ 50 spores · mm?2). In contrast, total sporophyte production by P. californica steadily increased with increasing spore density in aerated cultures; highest sporophyte density was observed on slides seeded at a density of 1000 spores · mm?2. Preliminary experiments with P. californica involving manipulation of aeration and nutrients indicate that inhibition of gametophyte growth and reproduction at higher densities of spore settlement in non-aerated cultures was probably caused by nutrient limitation.  相似文献   

14.
Gametophytes of Macrocystis pyrifera (L.) C. Ag. were cultured under a series of quantum irradiances in three photoperiod regimes. The quantum irradiances in each photoperiod were adjusted to provide equal daily irradiation dosages between photoperiods which allowed a critical examination of the interactions between quantum irradiance and quantum dose in determining gametophyte fertility. The lowest quantum irradiance which stimulated gametogenesis in more than 50% of the female gametophytes was 5 μE·m?2·s?1. The saturating irradiance was ca. 10 μE·m?2·s?1 at photoperiods of 12 h or greater. In terms of daily quantum dose, the lowest dose at which greater than 50% gametogenesis occurred was 0.2 E·m?2·d?1. However, this critical quantum dose was higher (0.4 E·m?2·d?1) when instantaneous irradiances were less than 5 μE·m?2·s?1. The saturation quantum dose was also affected by the rate at which the quantum dose was received and varied from 0.4 to 0.8 E·m?2·d?1. Gametophytes in all three photoperiods reached 100% fertility at quantum irradiances above 5 μE·m?2·s?1. Photoperiod effects were small and could be accounted for by quantum dosage effects.  相似文献   

15.
Radioactive bicarbonate was pulse fed to blades of Macrocystis pyrifera (L.) C. A. Ag. and the movement of the 11C-labelled photoassimilates was monitored in vivo using an externally mounted array of Geiger-Müller detectors. Results of experiments conducted in August 1982 and February 1983 showed kinetic transport profiles composed of short pulses of 11C (periods of two to three minutes and six to eight minutes) and a mass flow component travelling with a speed of 6–22 cm · h?1. The pulse-like movement of 11C-photoassimilates, revealed for the first time in a kelp, may be driven by an energy-assisted transport mechanism. Light microscopy revealed a putative symplastic transport pathway from the photo synthetic meristoderm to the medullary sieve cells in the M. pyrifera blade. Of particular importance were the connections between the inner cortical cells and thin-walled medullary sieve cells. Electron microscopy showed sieve plate pore diameters ranging between 35–60 nm in the cortex and ca. 40 nm in the end walls of the thin-walled sieve cells.  相似文献   

16.
The effect of shading by an adult canopy on blade-stage Macrocystis pyrifera (L.) C. A. Agardh was estimated by comparing the average growth rate of individuals under a canopy to that of individuals in a canopy gap. This comparison was made in 1983 during a strong El Niño and again in 1986 after the El Niño. Estimated nutrient concentrations in 1983 were two orders of magnitude below those in 1986, whereas ambient light levels were over 3 times higher. The kelp canopy caused similar proportional light reductions (20–30%) during both years. Blades grew 18% slower under the canopy than in the clearing in 1983 and about 77% slower under the canopy in 1986. Blade-stage individuals grew at the same rates in clearings in 1983 and 1986. Regardless of shading, the average growth rate of blade-stage kelp under the ambient, low-nutrient conditions of 1983 was higher than that later observed for multifronded juveniles during the same El Niño. The growth of blade-stage kelp was more like that of larger juveniles growing under high-nutrient conditions. The difference may be due to greater concentrations of nutrients very near the sea floor where single blades are growing compared to concentrations higher in the water column where larger kelp have most of their tissues.  相似文献   

17.
Seasonal variations in tissue nitrogen, carbon, amino acids and ammonium were determined for the brown algae Macrocystis integrifolia Bory and Nereocystis luetkeana (Mertens) Pastels and Ruprecht, For M. integrifolia, the proportions of tissue nitrogen and carbon in blades, bulbs and stipes were also determined. The composition of the two algae in terms of the above constituents was similar. In addition, ammonium, nitrogen and protein-bound amino acids showed distinct seasonal trends with high values during the winter and low levels during the summer. The range for nitrogen was 0.8–3.0% and for proteins 7.6–11.7% of dry weight. In contrast, carbon content and C/N ratio showed the reverse trend with higher values during the summer and lower values during the winter. The range for carbon was 19–31% of dry weight, and the C/N ratio showed a range of 9–37. The free amino acids did not show any specific seasonably. Tissue nitrogen and carbon showed higher values in the blades than in the bulbs and stipes.  相似文献   

18.
The causes of spatial variation in the recruitment of benthic marine algae are frequently misunderstood because of difficulties in distinguishing among the many factors that influence the supply and establishment of microscopic propagules. We used the recently constructed San Clemente Artificial Reef (SCAR) experiment to examine the roles of dispersal distance, size of spore source, and habitat availability as sources of variation in the recruitment of the giant kelp Macrocystis pyrifera (L.) C. Ag., a species whose recruitment has often been considered to be dispersal limited. Sparse colonization on SCAR by adult Macrocystis occurred within 6 months after reef construction via drifters (i.e. individuals from neighboring kelp beds that became dislodged and set adrift). The abundance of drifters on SCAR declined exponentially with distance from the nearest source population (San Mateo), suggesting that San Mateo was the likely source of drifters. Dense recruitment of small Macrocystis sporophytes was observed within 8 months of reef construction. The density of recruits on SCAR showed an initial increase with distance from San Mateo before declining exponentially. Nonetheless, substantial recruitment was observed at the most distant locations on SCAR located 3.5 km from San Mateo. In contrast to drifters, the density of recruits was positively correlated to the bottom cover of artificial reef substrate. Importantly, no correlation was found between the local density or fecundity of drifters and the local density of kelp recruits suggesting that recruitment on SCAR resulted from widespread spore dispersal rather than from the local dispersal of spores from drifters.  相似文献   

19.
Sporophytes of Macrocystis pyrifera (L.) C. A. Agardh of various stages of growth were studied by light microscopy to determine the initiation and ontogeny of secretory cells and the accompanying duct system. Secretory cells are initiated by asymmetric, periclinal divisions of meristoderm cells; subsequent mitoses increase the number of secretory cells associated with each duct. Duct formation occurs by schizogeny of anticlinal cell walls adjacent to the site of secretory cell initiation. Differences in distribution and structure of the duct system occur in various parts of the sporophyte. The duct system does not have openings directly to the sporophyte surface. Histochemical techniques showed that the duct contents are mostly sulfated polysaccharides with perhaps some lipid.  相似文献   

20.
Laboratory studies have indicated that Na+, K+ (together with Cl? the presumed counter-ion to these cations), NO3? and mannitol represent the major cellular osmotica in Laminaria digitata (Huds.) Lamour. The cellular content of NO3? (together with a fraction of the K+ pool which acts as the counter-ion to NO3?) was found to be inversely proportional to that of mannitol, suggesting that L. digitata maintains a constant turgor by means of an isotonic substitution between these compounds. An analysis of the seasonal changes in solute content in an Arbroath (Scotland) population of L. digitata confirmed this hypothesis and indicated that the total pool of stored photosynthate was partitioned between the interconvertible carbohydrates mannitol and laminaran (which has a much lower osmotic potential than mannitol) depending on the size of the cellular pool of NO3?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号