首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Recombinant penicillin acylase from Streptomyces lavendulae was covalently bound to epoxy-activated Sepabeads EC-EP303®. Optimization of the immobilization process led to a homogeneous distribution of the enzyme on the support surface avoiding the attachment of enzyme aggregates, as shown by confocal electron microscopy. The optimal immobilized biocatalyst had a specific enzymatic activity of 26.2IUgwetcarrier?1 in the hydrolysis of penicillin V at pH 8.0 and 40°C. This biocatalyst showed the highest activity at pH 8.5 and 65°C, 1.5 pH units lower and 5°C higher than its soluble counterpart. Substrate specificity of the derivative also showed its ability to efficiently hydrolyze other natural aliphatic penicillins such as penicillins K, F and dihydroF. The immobilized enzyme was highly stable at 40°C and pH 8.0 (t1/2=625 h vs. t1/2=397 h for the soluble enzyme), and it could be recycled for at least 30 consecutive batch reactions without loss of catalytic activity.  相似文献   

3.
4.
Enzyme production with E. coli ATCC 11105, in a complex medium using phenylacetic acid as inducer is carried out in a stirred-tank reactor of 10 dm3 and an airlift tower-loop reactor of 60 dm3 with outer loop at a temperature of 27 °C. The optimum inducer concentration was 0.8 kg/m3, which was kept constant by fed-batch operation. The optimum of the relative dissolved O2-concentration with regard to saturation is below 10% in a stirred-tank reactor and at 35% in a tower-loop reactor. It was kept constant by parameter-adaptive control of the aeration rate. In a stirred-tank enzyme productivity is slightly higher than in a tower-loop reactor, and much higher than in a bubble column reactor.List of Symbols CPR kg/(m3 h) CO2-production rate - OTR kg/(m3 h) O2-transfer rate - OUR kg/(m3 h) O2-utilization rate - PAA phenylacetic acid (inducer) - RQ = CPR/OUR respiratory quotient - X kg/m3 cell mass concentration - m h–1 maximum specific growth rate  相似文献   

5.
Penicillin acylase in the synthesis of aminothiazole cefalosporins   总被引:1,自引:0,他引:1  
Summary Cefotiam (7) and cefotaxime (8) are obtained by penicillin acylase hydrolysis of (5) and (6), prepared, in turn, by chemical condensation of 7-DIMAT (3) and 7-ACA (4), respectively, with N-phenacetyl-2-aminothiazol-4-yl acetic acids (1) and (2).  相似文献   

6.
7.
Lilly MD  Carleysmith SW  Dunnill P 《Biochimie》1980,62(5-6):317-321
Immobilized penicillin acylase preparations have much higher activities per unit volume than immobilized cell preparations. Many parameters of the deacylation reaction are dependent on pH and both reactant and one of the products, 6-aminopenicillanic acid, are acid and alkali labile. Acid is produced as result of the deacylation reaction and must be neutralised. The influence of these pH effects on the design of the catalyst and the reactor is discussed.  相似文献   

8.
Enzymatic syntheses of cefaclor by immobilized penicillin acylase under kinetic control were carried out. According to the initial reaction rate ratio of synthesis to hydrolysis (Vs/Vh), penicillin acylase from Alcaligenes faecalis was chosen as the suitable catalyst for the synthesis of cefaclor. The reaction conditions, such as temperature, pH, and substrate concentration were investigated based on their Vs/Vh values. In the process of preparing cefaclor, in situ product removal (ISPR) and acyl donor feeding were used to achieve high yield. At the optimal conditions, the yield of cefaclor was 90%. In addition, the product were separated and purified, the total yield of cefaclor was 61%.  相似文献   

9.
The introduction of affinity chromatography has opened a new dimension in protein purification. This article reviews the current techniques used in the penicillin acylase purification process, especially pseudo-affinity chromatography. A profile for a suitable ligand is established. An aromatic ring and the presence of one or several amino groups seem essential for proper interaction. Immobilized metal affinity chromatography now seems to be a good competitor.  相似文献   

10.
Summary We propose a new and integrated method for the evaluation of industrial enzymes. The application of this method to the enzyme penicillin G acylase fromKlyvera citrophila shows very interesting industrial propects. This acylase presents a much better stability agains heat, pH or organic cosovents as compared with the more popular enzyme fromEscherichia coli. In addition, this enzyme is very easy to immobilize through its amine groups and to stabilize through multipoint covalent attachment on activated pre-existing supports.  相似文献   

11.
Penicillin acylase (EC 3.5.1.11) catalyses the condensation of phenylacetic acid (PAA) and 6-aminopenicillanic acid (6-APA) to form benzylpenicillin (BP). Both PAA and 6-APA were found to form host-guest complexes with beta-methylcyclodextrin (beta m-CD) and gamma-cyclodextrin (gamma-CD) respectively. The rate of the reaction catalyzed by the enzyme remained unaffected if one of the substrates used was in the cyclodextrin complexed form. However, in this case, the reaction lasted longer and yielded about 20 per cent more products compared to the condensation reaction involving only uncomplexed substrates. There was distinct increase in the rate of formation of the antibiotic, if both substrates used are in CD-complexed form.  相似文献   

12.
Summary Oligonucleotide-directed mutagenesis has been used to obtain specific changes in the penicillin acylase gene from Kluyvera citrophila. Wild-type and mutant proteins were purified and the kinetic constants for different substrates were determined. Mutations in Met168 highly decreased the specificity constant of the enzyme for penicillin G, penicillin V and phenylacetyl-4-aminobenzoic acid and the catalytic constant k cat for phenylacetyl-4-aminobenzoic acid. Likewise, the phenylmethylsulphonyl-fluoride sensitivity was significantly decreased. It is concluded that the 168 residue is involved in binding by interaction with the acid moiety of the substrate. A putative penicillin-binding domain was located in penicillin acylase by sequence homology with other penicillin-recognizing enzymes. Lys374 and His481, the conserved amino acid residues that are essential for catalysis in these enzymes, can be changed in penicillin acylase with no changes to the k cat and phenylmethylsulphonyl fluoride reactivity, but change the K m.The likelihood of the existence of this proposed penicillin binding site is discussed. The reported results might be used to alter the substrate specificity of penicillin acylase in order to hydrolyse substrates of industrial significance other than penicillins. Offprint requests to: I. Prieto  相似文献   

13.
The aim of this work was to test a chromatographic support, 4-mercaptoethyl pyridine (4-MEP) Hypercel, for penicillin acylase purification by using pure penicillin acylase and crude extract. Two equilibration buffers with various salt concentrations and different flow rates were tested. The relationships between electrostatic and hydrophobic interactions and proteins are demonstrated. (NH4)2SO4 proved preferable because no salting-in occurred, contrary to NaCl. The recovery and purification fold were similar to those obtained in pseudo-affinity chromatography with a three-fold reduction of the (NH4)2SO4 concentration.  相似文献   

14.
15.
The immobilized metal affinity membrane (IMAM) with modified regeneration cellulose was employed for purification of penicillin G acylase (PGA). For studying PGA adsorption capacity on the IMAM, factors such as chelator surface density, chelating metal, loading temperature, pH, NaCl concentration and elution solutions were investigated. The optimal loading conditions were found at 4 degrees C, 0.5 M NaCl, 32.04 micromol Cu(2+) per disk with 10 mM sodium phosphate buffer, pH 8.5, whereas elution conditions were: 1 M NH(4)Cl with 10 mM sodium phosphate buffer, pH 6.8. By applying these chromatographic conditions to the flow experiments in a cartridge, a 9.11-fold purification in specific activity with 90.25% recovery for PGA purification was obtained. Meanwhile, more than eight-times reusability of the membrane was achieved with the EDTA regeneration solutions.  相似文献   

16.
Penicillin acylase from E. coli: unique gene-protein relation.   总被引:15,自引:1,他引:15       下载免费PDF全文
The nucleotide sequence of the gene (pac) coding for penicillin G acylase from E. coli ATCC 11105 was determined and correlated with the primary structure of the two constituent subunits of this enzyme. The pac gene open reading frame consists of four structural domains: Nucleotide positions 1-78 coding for a signal peptide, positions 79-705 coding for the alpha subunit, positions 706-867 coding for a spacer peptide, and positions 868-2538 coding for the beta subunit. Plasmids were constructed which direct the synthesis of a pac gene product lacking the signal peptide, and the synthesis of the alpha subunit or the beta subunit. The following results were obtained: The two dissimilar subunits are processing products of a single precursor polypeptide; the spacer peptide is removed during processing; the precursor polypeptide lacking the signal sequence is accumulated in the cytoplasm; it is not processed proteolytically in the cytoplasm and it does not display enzyme activity. Processing, therefore, requires translocation through the cytoplasmic membrane; processing follows a distinct sequential pathway in vitro.  相似文献   

17.
Summary Whole cells of Kluyvera citrophila were immobilized in polyacrylamide gel. The penicillin acylase activity of immobilized whole cells was 60%–70% of native cells. When the immobilized cells were continuously cultivated for 40 h in an aerated fermentor containing peptone medium and were treated with alkali in order to remove -lactamase activity, the immobilized cells produced ampicillin up to 4.4 times faster than noncultivated cells.Ampicillin production was investigated in a column system using these cultivated immobilized whole cells. The cultivated immobilized cells showed excellent performance in continuous ampicillin production.  相似文献   

18.
An active insoluble preparation of immobilized benzyl penicillin acylase (IBA) EC 3.5.1.11 has been obtained by its entrapping into polyacrylamide gel lattice. Due to immobilization the preparation maintains up to 87% of its initial activity. The kinetics of IBA at low substrate concentrations obeys the Michaelis-Menten law; however, the apparent KM value decreases and the temperature optimum elevates. The inhibition by the reaction products--6-aminopenicillanic acid and phenylacetic acid--has been found to be 4.3 mM. The resultant IBA preparation proves to be suitable for hydrolysis of 5% benzyl penicillin solutions.  相似文献   

19.
20.
A batch of the immobilized industrial biocatalyst glutaryl-7-ACA acylase (GA), one of the two enzymes involved in the biotransformation of cephalosporin C (CefC) into 7-aminocephalosporanic acid (7-ACA), was characterized. K(m) value for glutaryl-7-ACA was 5 mM. Enzyme activity was found to be optimal at pH between 7 and 9.5 and to increase with temperature and in buffered solutions. To avoid product degradation, optimal reaction conditions were obtained working at 25 degrees C using a 50-mM phosphate buffer, pH 8.0. Immobilized GA showed good stability at pH value below 9 and at temperature up to 30 degrees C. The inactivation of immobilized GA in the presence of different amounts of H(2)O(2), a side product that might be present in the plant-scale industrial solutions of glutaryl-7-ACA, was also investigated, but the deactivation rates were negligible at H(2)O(2) concentration that might be reached under operative conditions. Finally, biocatalyst performance in the complete two-step enzymatic conversion process from CefC to 7-ACA was determined on a laboratory scale. Following the complete conversion of a 75 mM solution of CefC into glutaryl-7-ACA catalyzed by an immobilized D-amino acid oxidase (DAAO), immobilized GA was used for the transformation of this intermediate into the final product 7-ACA. This reaction was repeated for 42 cycles. An estimation of the residual activity of the biocatalyst showed that 50% inactivation of immobilized GA was reached after approximately 300 cycles, corresponding to an enzyme consumption of 0.4 kU per kg of isolated 7-ACA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号