首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sipunculans, a small phylum of coelomated marine worms closely related to polychaete annelids, lack a true circulatory system. We have previously shown that the sipunculan Themiste petricola can form a cellular clot, without congealing, of cell-free coelomic fluid. The clot is formed by the aggregation of large granular leukocytes (LGLs) and may serve not only haemostatic but immune functions, since dissimilar particles may become entrapped within it. We have now evaluated the capacity of a massive clot, induced in vitro by sea water contact, to stop coelomic fluid flow. We have further studied smaller clots induced on glass-slides either with or without the presence of bacteria placed for entrapment within the clot. The fate of clotting LGLs is cell death while forming a cohesive mass, although cytoplasmic and nuclear remnants are shed from the clot. These remnants and any bacteria that avoid clot entrapment or are detached from the clot are engulfed by non-clotting cells that include small granular leukocytes (SGLs) and large hyaline amebocytes (LHAs). Both cell types can be found other than in the clot but SGLs also occur around the clot edges heavily loaded with engulfed material. The cytoskeletal arrangement of SGLs evaluated with phalloidin-rhodamine correspond to motile cells and contrast with that of clotting LGLs that form a massive network of F-actin. Thus, the complementary roles between clotting LGLs and non-clotting SGLs and LHAs act a central immune strategy of Themiste petricola to deal with body wall injury and pathogen intrusion into the coelomic cavity.  相似文献   

2.
The microscopic anatomy and ultrastructure of a Polian vessel have been studied in the sipunculan Thysanocardia nigra Ikeda, 1904 from the Sea of Japan using the methods of histology and electron microscopy. We describe ultrastructural features of the inner and outer coelothelium, which is constructed of podocytes and multiciliary cells. Between the processes of the podocyte cells, we found double diaphragms that are considered characteristic macromolecular filters. We conclude from an analysis of the ultrastructural features of the vessel wall that coelomic fluid may be filtered from the tentacular coelom to the trunk coelom via the wall of the Polian vessel.  相似文献   

3.
Echinoid phagocytes in vitro   总被引:2,自引:0,他引:2  
A method is described for obtaining pure monolayers of phagocytes from the sea urchin Strongylocentrotus droebachiensis in vitro. The coelomic fluid contains four types of cells. About 67% of the cells are phagocytes, the rest is comprised of the red and white morula cells and the vibratile cells. The different cell types could be separated by centrifugation on a discontinuous gradient of sodium metrizoate. Release of granula from the vibratile cells was found to be responsible for rapid and extensive clotting of the coelomic fluid immediately after its removal from the animal. Clotting was prevented by adding a mixture of 50 mM mercaptoethanol, 3 mM caffeine and 2 mM TAME (p-tosyl- -arginine methyl ester) to the coelomic fluid. The phagocytes were isolated from other cell types by their attachment to glass, and were grown at 10 °C in a simple peptone-sea water medium. The phagocytes are very motile cells and spread rapidly on glass, accompanied by a complete change of their morphology to flattened cells with peripheral ruffling. After few hours in vitro the cells fuse to form monolayer-syncytia, and later still cell clusters and free floating balls of cells are formed. During a culture period of 10 days there was no change in the DNA content per culture, while a small increase in protein was found.  相似文献   

4.
Free-floating coelomocytes in the tentacular coelomic cavity of the sipunculan Thysanocardia nigra Ikeda, 1904, were studied using light interference contrast microscopy and scanning and transmission electron microscopy. The following coelomocyte types were distinguished: hemerythrocytes, amoebocytes, and two morphological types of granular cells. No clusters of specialized cells that had been reported to occur in the trunk coelom of Th. nigra were found in the tentacular coelom. The corresponding types of coelomocytes from the tentacular and trunk coelomic cavities were shown to differ in size. These two coeloms are completely separated in sipunculans.  相似文献   

5.
The cellular composition of the coelomic fluid of the Far Eastern holothurinans Apostichopus japonicus and Cucumaria japonica was studied using light and transmission electron microscopy and histochemistry. In the coelomic fluid of A. japonicus, the following types of coelomocytes were distinguished: progenitor cells; amoebocytes; vacuolated cells; small (or young) morula cells; morula cells of type I, type II, and type III; crystal cells; and vibratile cells. In the coelomic fluid of C. japonicawere found progenitor cells, amoebocytes, vacuolated cells, morula cells of type I and type II, crystal cells, and hemocytes containing a respiratory pigment. The issue of stem cell type, which gives rise to coelomocytes, is discussed.  相似文献   

6.
The microscopic anatomy and ultrastructure of nephridium have been studied in the sipunculan Thysanocardia nigra Ikeda, 1904 (Sipuncula, Sipunculidea) from the Sea of Japan using histological and electron microscopic techniques (SEM and TEM). This paper describes ultrastructural features of nephridial epithelium, muscle grid, and coelomic epithelium on the surface of the nephridium, the area of the ciliary funnel, and the tongue. Several types of cells were distinguished in the excretory tube of the nephridium: (1) a columnar epithelium of the excretory bunches; (2) a cubical or flattened epithelium of flask-shaped infoldings; and (3) granulocytes that migrate from the coelom to the extracellular matrix of the nephridial wall. The system of podocytes and multiciliary cells were described in the nephridial coelothelium. Two types of secretion of nephridial epithelium have been discovered: a merocrine secretion of columnar cells and an apocrine secretion of cells of the flask-shaped infoldings. Using ultrastructural data, two zones of filtration through the wall of excretory tube have been found, namely (1) the tips of flask-shaped infoldings (via the extracellular matrix and microvillary canals between the epithelial cells) and (2) areas between the flask-shaped infoldings (via the contacts of podocytes, extracellular matrix, and the basal labyrinth of the columnar cells). Unlike previously studied representatives of the genus Phascolosoma, no coelomic epithelium is present on the tips of the flask-shaped infoldings in Th. nigra. This data on the anatomy and histology allow us to conclude that the funnel only works like a gonoduct.  相似文献   

7.
Three main cell types were found in the coelomic fluid (CF) of intact starfishes: agranulocytes (55-80%) varying in size and form (spherical and ovoid) and with occasional pseudopodia, granulocytes (15-45%), and small cells (up to 2 %) with a high nuclear-cytoplasmic ratio. The starfish response to injury depends on the degree of coelomic fluid loss. After a slight wounding, when only insignificant portion of CF is lost, the cellular composition of circulating fluid changed only slightly. Unlike, a significant injury resulted in rising the share of small cells, regarded presumably as young cells. Besides, after injury the functional characteristics of SF also changed: the proportion of cells with decondensed chromatin and stained nucleoli increased, and coelomocytes acquired ability to form nets at adhesion. Moreover, some new cell types can be found (fusiform cells), with granulocyte proportion in nets increasing. We suppose that after slight wounding circulating coelomocytes may restore from the existing store of differentiated cells beyond the circulation, whereas after significant injury young undifferentiated coelomocytes are involved in the process of restoration.  相似文献   

8.
Abstract The hepatic region of Glossobalanus minutus is characterized by deep foldings of the dorsal side of the gut epithelium which affect the neighbouring tissues and structures: coelomic spaces, musculature and epidermis. The following cell types of the gut epithelium are described: vacuolated cells, undifferentiated cells, two types of mucous cells and two types of granular secretory cells. The nature and function of the different cell types are discussed. Data on the general ciliation and subepithelial nerve plexus of the gut epithelium are also given, with special mention of a possible neuroendocrine secretion towards the subjacent blood spaces. A well-developed blood sinus (gut sinus) lies between the gut and the visceral peritoneum. The ultrastructural features of the gut epithelium and its close association with the blood sinus point to an absorptive function. The coelomic cavity is reduced to a narrow space limited by two peritoneal sheets (visceral and parietal) of myoepithelial nature. Amoebocyte-like cells (coelomocytes) occur free in the coelomic fluid, and muscular, unicellular bridges are attached to both peritoneal walls across the coelomic space. The dorsal epidermis follows the gut foldings and is formed by flat, overlapping cells. The present observations are compared with previous histological, histochemical and ultrastructural data.  相似文献   

9.
The ultrastructure of the tentacles was studied in the sipunculid worm Thysanocardia nigra. Flexible digitate tentacles are arranged into the dorsal and ventral tentacular crowns at the anterior end of the introvert of Th. nigra. The tentacle bears oral, lateral, and aboral rows of cilia; on the oral side, there is a longitudinal groove. Each tentacle contains two oral tentacular canals and an aboral tentacular canal. The oral side of the tentacle is covered by a simple columnar epithelium, which contains large glandular cells that secrete their products onto the apical surface of the epithelium. The lateral and aboral epithelia are composed of cuboidal and flattened cells. The tentacular canals are lined with a flattened coelomic epithelium that consists of podocytes with their processes and multiciliated cells. The tentacular canals are continuous with the radial coelomic canals of the head and constitute the terminal parts of the tentacular coelom, which shows a highly complex morphology. Five tentacular nerves and circular and longitudinal muscle bands lie in the connective tissue of the tentacle wall. Similarities and differences in the tentacle morphology between Th. nigra and other sipunculan species are discussed.Original Russian Text Copyright © 2005 by Biologiya Morya, Maiorova, Adrianov.  相似文献   

10.
Clotting in animals having open or closed circulatory system comprises humoral and cellular mechanisms. Sipunculans are a small phylum of non-segmented marine worms that do not have a true circulatory system. These worms can form a cellular clot without transforming cell-free coelomic fluid into an insoluble mass. The clot may also contribute to immune response by entrapping foreign particles. We evaluated the formation of a cellular clot ex vivo in the sipunculan Themiste petricola after activation through glass contact and sea water, the ability to entrap magnetic beads and non-pathogen cyanobacteria particles within the clot, and the presence of a peptidoglycan recognition protein S (PGRP-S) antigen in cells forming the clot. Our results showed that the clot was formed by homotypic aggregation of large granular leukocytes (LGLs), a subtype of cells found in the coelomic fluid. Aggregated LGLs served to entrap magnetic beads and non-pathogen cyanobacteria particles, and PGRP-S antigen was detected both in non-activated LGLs and in activated homotypic aggregates through immunofluorescence, Western blot and flow cytometry. Cellular clots were found to be positive to Annexin V-FITC labelling. Complete disintegration of cytoplasm with shedding of microparticles, nuclear isolation and degradation were also observed by light microscopy and flow cytometry. In conclusion, cellular clot formation in Themiste petricola may serve both haemostatic and immune functions entailing rapid activation changes in LGLs, entrapment of foreign particles within a homotypic aggregate, and further cell death.  相似文献   

11.
The fate of the small micromeres in sea urchin development   总被引:6,自引:0,他引:6  
We show that in sea urchin embryos, the daughter cells of the small micromeres become part of the coelomic sacs, in contrast to the long-held view that these sacs are purely of macromere origin. In addition, after prolonged mitotic quiescence, and following their incorporation into the coelomic sacs, these cells resume dividing, contrary to the previous view that they do not divide. Since coelomic sac cells give rise to much of the adult urchin, our results indicate that the small micromeres are founders of cell lineages involved in the formation of adult tissues. The setting aside of these cells in a nondividing state may be analogous to a phenomenon in Drosophila development, in which primordial imaginal and germ cells divide approximately once after the blastoderm stage and do not resume dividing until the larval stage.  相似文献   

12.
A special interest exists concerning lungfish because they may possess characteristics of the common ancestor of land vertebrates. However, little is known about their blood and inflammatory cells; thus the fine structure, cytochemistry and differential cell counts of coelomic exudate and blood leucocytes were studied in Lepidosiren paradoxa. Blood smear analyses revealed erythrocytes, lymphocytes, monocytes, polymorphonuclear agranulocytes, thrombocytes and three different granulocytes. Blood monocytes and lymphocytes had typical vertebrate morphology. Thrombocytes had large vacuoles filled with a myelin rich structure. The polymorphonuclear agranulocyte had a nucleus morphologically similar to the human neutrophil with no apparent granules. Types I and II granulocytes had eosinophilic granules. Type I granulocytes had round or elongated granules heterogeneous in size, while type II had granules with an electron dense core. Type III granulocyte had many basophilic granules. The order of frequency was: type I granulocyte, followed by lymphocyte, type II granulocyte, monocyte, polymorphonuclear agranulocyte and type III granulocyte. Peroxidase localized mainly at the periphery of the granules from type II granulocytes, while no peroxidase expression was detected in type I granulocytes. Alkaline phosphatase was localized in the granules of type II granulocyte and acid phosphatase cytochemistry also labelled a few vacuoles of polymorphonuclear agranulocyte. About 85% of the coelomic inflammatory exudate cell population was type II granulocyte, 10% polymorphonuclear agranulocyte and 5% macrophages as judged by the nucleus and granule morphology. These results indicate that this lungfish utilises type II granulocytes as its main inflammatory granulocytes and that the polymorphonuclear agranulocyte may also be involved in the inflammatory response. The other two granulocytes appear similar to the mammalian eosinophil and basophil. In summary, this lungfish appears to possess the typical inflammatory granulocytes of teleosts, however, further functional studies are necessary to better understand the polymorphonuclear agranulocyte.  相似文献   

13.
We report on the occurrence, distribution, and anatomy of tower cells in colonies of the marine gymnolaemate bryozoan Membranipora membranacea that occurs epiphytically on the brown alga Fucus vesiculosus in the intertidal at Nahant, Massachusetts. Tower cells are a category of heterozooid that lack a polypide and possess an elongated finger‐shaped extension of the frontal surface. Two stages of tower‐cell development are examined. Developing tower cells possess an endocyst composed of epidermal and mesodermal cells. In fully developed tower cells, the endocyst is incomplete and consists in part of a mass of intermixed epi‐ and mesodermal cells suspended in the coelomic cavity. The coelomic fluid contains two types of coelomocytes: amoebocytes and granulocytes. The position and orientation of 1,592 tower cells are recorded. Fifty‐four percent of these tower cells occur at the contact zone between two different colonies, which suggests that tower cells might be a defense‐related structure preventing overgrowth by neighboring colonies. Additionally, 89% of the tower cells occurring at the lateral margin of the frond are parallel to the surface of the algal frond , which suggests that they may increase the rigidity of the frond‐colony complex, thereby protecting the colonies from abrasion. J. Morphol. 239:121–130, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
Summary Studies in Mytilus edulis have indicated that immunoregulatory activities comoparable to those in vertebrates also exist in invertebrates. Mytilus immunocytes resemble cells of the vertebrate monocyte/macrophage lineage and are activated by similar substances. We searched for differential effects of opioids on these cells in comparison with those of lipopolysaccharide (LPS), in order to determine if different subpopulations of immunoactive hemocytes are involved. We showed that Mytilus immunocytes respond to LPS in a fashion similar to that in vertebrate granulocytes by flattening, and increasing in cellular perimeter and mobility, that LPS administered in vivo results in a lowering of the number of free hemocytes that can be obtained from the animal, and that distinct immunoactive cell populations seem to exist since apparently different subsets of cells react when exposed to LPS or opioids and the opioid antagonist naloxone.  相似文献   

15.
The microscopic anatomy and ultrastructure of the body cavity and adjacent organs in the sea spider Nymphon brevirostre Hodge, 1863 (Pycnogonida, Nymphonidae) were examined by transmission electron microscopy. The longitudinal septa subdividing the body cavity are described: (1) Dohrn’s horizontal septum, (2) lateral heart walls, and (3) paired ventral septa consisting of separate cellular bands. The body cavity is a hemocoel, it has no epithelial lining and is only bordered by a basal lamina. The epidermis, heart, and Dohrn’s septum are not separated from each other by basal laminae and may have a common origin. The cellular bands forming the longitudinal ventral septa are not covered with the basal lamina and presumably derive from cells belonging to the hemocoel. The roles of the morphological structures studied for the circulation of hemolymph are discussed. The gonad lies inside Dohrn’s septum, it is covered with its own basal lamina and surrounded by numerous lacunae of the hemocoel entering the septum. The gonad wall is formed with a single layer of epithelium. The same epithelial cells form the gonad stroma. The gonad cavity is not lined with the basal lamina; muscle cells are present in the gonad wall epithelium, thus rendering the lumen similar to a coelomic cavity. Freely circulating cells of two types are found in the hemocoel: small amebocytes containing electronic-dense granules that are similar to granulocytes of other arthropods, as well as hemocytes with large vacuoles of varying structure that are comparable with plasmatocytes; however some of these may be activated granulocytes.  相似文献   

16.
Floral ontogeny was examined in Cyclamen persicum ‘F-1 Rosemunde Rose’ using a combination of light and scanning electron microscopy. The leaf plastochron index (LPI), earlier calculated for leaf elongation, was used to determine the length of each stage of floral development. LPI will provide a useful tool for selecting flowers of a given stage from large plant populations or from plants where flowers are small or inaccessible during early ontogenetic stages. Most features of floral development are similar to those previously described for other primulaceous genera. The petal-stamen relationship, however, is unusual; stamens arise through periclinal cell divisions in the adaxial surface layers of common petal-stamen primordia. Anatomical evidence suggests that the placenta is formed both by appendicular initials which give rise to the ovules and ventral carpellary bundles, and receptacular cells which form some, if not all, of the central axis.  相似文献   

17.
Arenicola marina gills are hollow, branched, body outgrowths with a central coelomic cavity and afferent and efferent vessels. The gill surface area per unit body weight is about 4 cm2/g wet weight. The blood vascular system anatomy differs from the tip to the base of the gill. In the distal branches of the gill the superficial afferent and efferent vessels are joined by connecting vessels. All vessels arise as spacings between the basal laminae of the thin epidermis and of the coelomic myoepithelium. The contractile part of this epithelium mainly borders the afferent and efferent vessels, whereas pedicel-like cytoplasmic processes extend from the cell bodies and mainly line the connecting vessels. In the proximal branches of the gill the afferent and efferent vessels located in the coelomic cavity are surrounded by the coelomic myoepithelium, and a peripheral blood plexus is present below the epidermis. The gill epidermis is everywhere thin and does not exhibit the characters of a transporting epithelium. The gill coelomic myoepithelium has several functions: (i) periodic contractions of the gill, propelling blood and coelomic fluid toward the central vascular and coelomic compartments; (ii) blood ultrafilration toward the coelomic cavity; (iii) probably transport, suggested by the specialized structures of the lateral membranes of the cells.  相似文献   

18.
Abstract

The lugworm, Arenicola marina L. has an annual cycle of reproduction with epidemic spawning and external fertilisation. The spermatozoa of Arenicola are unusual in that they are held immotile (as plates of several hundred cells known as morulae) in the coelomic fluid until activated just prior to spawning. Activation of Arenicola sperm is brought about by a sperm maturation factor (SMF) from the prostomium and can be carried out in vitro using an assay technique developed by Bentley (1985). Scanning electron microscopy is used here to examine the changes which occur during in vitro activation. This revealed that the bundles of flagella of inactive sperm become disorganised as flagella beating commences but the flagella at this stage are still bound together at their tips. The sperm heads then become separated from the cytophore and finally the distal binding of the flagella is broken to give free-swimming spermatozoa. Coelomocytes present in the coelomic fluid resorb unspawned gametes prior to the initiation of the next gametogenic phase.  相似文献   

19.
Two types of coelomocytes, the mucocyte and the phagocyte, occur in Enchytraeus fragmentosus. Other free cells observed within the coelomic cavity include chloragogen cells, peritoneal cells and some anucleate granular cells. Three forms of mucocytes occur and are believed to represent developmental stages. The first stage is one in which the mucous droplets are forming in the Golgi region. The second stage is a mature form, and the third stage is one in which the mucous droplets are being released. The phagocytes generally are quite large, and inclusions vary from recognizable portions of chloragogen cells to extremely small, electron-dense cytosomes. The origin of the coelomocytes could not be determined. Probable functions of coelomocytes are discussed.  相似文献   

20.
The immature oocytes of the echiuroid worm Urechis caupo develop while suspended as single cells in the coelomic fluid, free of any associated nurse or follicle cells. In any one female, size classes can be found ranging from 8 to 130 μm in diameter. A method is described for obtaining four to five relatively uniform size fractions by centrifuging the mixed oocyte population through a discontinuous Ficoll gradient and collecting the different size oocytes which accumulate at each step of the gradient. Phagocytosis of oocytes in vivo is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号