首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arlette Garnier  Lucia Tosi 《Biopolymers》1975,14(11):2247-2262
The study of Cu(II)–poly(L -arginine) complexes by potentiometric titration, as well as by optical, circular dichroism, and infrared spectra, provides information about the nature of ligands and the coordination sphere around the metal ion. Three different complexes have been identified. The first, which is formed below pH 8, contains two guanidinium nitrogens and two water molecules at the corners of the coordination square. The constant of the overall process as determined by the Gregor method equals 2.0 ± 0.1 × 10?9. The two other complexes form between pH 8 and 10.5 and they contain two guanidinium and two peptide nitrogens as nearest ligands. One of them is a monomer and the other probably a dimer, which differ in the symmetry of the coordination sphere around the cupric ion. The optical spectra of the three complexes show an absorption band at 260 nm that we have assigned to a charge-transfer transition between a σ metal nitrogen (amine) molecular orbital and a dx2?y2 metal orbital. The spectra of the two complexes containing peptide nitrogens exhibit another absorption band at 320 nm, which we have assigned to a charge transfer from a π orbital of the amide group to the dx2?y2 metal orbital.  相似文献   

2.
Iwao Satake  Jen Tsi Yang 《Biopolymers》1975,14(9):1841-1846
The conformational phase diagram of poly(L -lysine) (4.6 × 10?4 M, residue) in sodium dodecyl sulfate (1.6 × 10?2 M) solution was constructed from circular dichroism results at various temperatures and pH's. Poly(L -lysine)–sodium dodecyl sulfate complexes undergo a β–helix transition upon raising the pH of the solution. The transition pH tends to shift downward at elevated temperatures. No helix–β transition can be detected for poly(L -lysine) in sodium dodecyl sulfate solution (pH > 11) even after 1-hr heating at 70°C. This is in marked contrast with uncharged poly(L -lysine) solution without sodium dodecyl sulfate, which is converted into the β-form upon mild heating of the solution above 50°C.  相似文献   

3.
Two new homo- and hetero-dinuclear complexes, [Cu2L(im)](ClO4)34H2O (1) and [CuZnL(im)](ClO4)34H2O (2) (where Im=1H-1midazole and L = 3, 6, 9, 16, 19, 22-hexaaza-6, 19-bis(1H-imidazol-4-ylmethyl)tricycle[22, 2, 2, 211,14]triaconta-1, 11, 13, 24, 27, 29-hexaene) were synthesized and characterized as model compounds for the active site of copper(II)–zinc(II) superoxide dismutase (Cu2Zn2–SOD). X-ray crystal structure analysis revealed that the metal centers in both complexes exhibit distorted trigonal-bipyramid coordination geometry and the CuCu and CuZn distances are both 6.02 Å. Magnetic and ESR spectral measurements of 1 showed antiferromagnetic exchange interactions between the imidazolate-bridged Cu(II) ions. The ESR spectrum of 2 displays typical signals of mononuclear Cu(II) complex, demonstrating the formation of heterodinuclear complex 2 rather than a mixture of homodinuclear Cu(II)/Zn(II) complexes. pH-dependent ESR and UV–visible spectral measurements manifest that the imidazolate exists as a bridging ligand from pH 6 to 11 for both complexes. The IC50 values of 1.96 and 1.57 μM [per Cu(II) ion] for 1 and 2 suggest that they are good models for the Cu2Zn2–SOD.  相似文献   

4.
The cupric complexes of poly(Nε-acetoacetyl-L -lysine), [Lys(Acac)]n′ poly(Nδ-acetoacetyl-L -ornithine), [Orn(Acac)]n′ and poly(Nγ-acetoacetyl-L -diaminobutyric acid), [A2bu-(Acac)]n, as well as of the model compound n-hexyl acetoacetamide, have been investigated by means of absorption, potentiometric, equilibrium dialysis, and CD measurements. While in the complex of the model compound, one chelating group is bound to one cupric ion, in the polymeric complexes two β-ketoamide groups are bound to Cu(II) under the same experimental conditions. The binding constant of cupric ions to the three polymers and the formation constant of the Cu(II)-nhexylacetoacetamide complex have been evluated. Investigation on the chiroptical properties of the three polymeric complexes shows that the peptide backbone does not undergo conformational transitions, remaining α-helical when up to 20% of the side chains are bound to Cu(II). The optical activity of the β-ketoamide chromophores is substantially affected by complex formation and is discussed in terms of asymmetric induction from the chiral backbone.  相似文献   

5.
In the H2O2–SCN?–Cu2+–OH?–luminol oscillatory system of chemiluminescence, the effects of the ingredient concentrations, temperature, flow rate and complexing agent on the oscillatory dynamics were investigated in a continuous‐flow stirred tank reactor (CSTR). The dynamical structure of two peaks during a period was discussed in detail. By addition of EDTA to the oscillating system, the peak I height decreased sharply while the peak II height was little affected, and the period kept constant. This may be due to the fast reaction between Cu(II) and EDTA and the highly stable complex Cu(II)–EDTA. From the experimental study and mechanism analysis, the chemiluminescent peak I corresponds to Cu(II) → Cu(I) transformation and the peak II corresponds to the Cu(I) → Cu(II) transformation process. The key species involving in the two‐transformation process are inferred to be superoxide radical and hydroxyl radical. Copyright © 2010 John Wiley & Son, Ltd.  相似文献   

6.
Metallothionein (MT) is a ubiquitous mammalian protein comprising 61 or 62 nonaromatic amino acids of which 20 are cysteine residues. The high sulfhydryl content imparts to this protein a unique and remarkable ability to bind multiple metal ions in structurally significant metal–thiolate clusters. MT can bind seven divalent metal ions per protein molecule in two domains with exclusive tetrahedral metal coordination. The domain stoichiometries for the M7S20 structure are M4(Scys)11 (α domain) and M3(Scys)9 (β domain). Up to 12 Cu(I) ions can displace the 7 Zn2+ ions bound per molecule in Zn7–MT. The incoming Cu(I) ions adopt a trigonal planar geometry with domain stoichiometries for the Cu12S20 structure of Cu6(Scys)11 and Cu6(Scys)9 for the α and β domains, respectively. The circular dichroism (CD) spectra recorded as Cu+ is added to Zn7–MT to form Cu12–MT directly report structural changes that take place in the metal binding region. The spectrum arises under charge transfer transitions between the cysteine S and the Cu(I); because the Cu(I)–thiolate cluster units are located within the chiral binding site, intensities in the CD spectrum are directly related to changes in the binding site. The CD technique clearly indicates stoichiometries of several Cu(I)–MT species. Model Cu(I)–thiolate complexes, using the tripeptide glutathione as the sulfhydryl source, were examined by CD spectroscopy to obtain transition energies and the Cu(I)–thiolate coordination geometries which correspond to these bands. Possible structures for the Cu(I)–thiolate clusters in the α and β domains of Cu12–MT are proposed. © 1994 Wiley-Liss, Inc.  相似文献   

7.
DNA‐based chiral selectors are constructed to discriminate ofloxacin enantiomers through metal‐ion anchoring on a special DNA double helix that contains successive GC pairs. The effects of metal ions involving Mg2+, Ni2+, Cu2+, Ag+, and Pt2+ were studied on the regulation of DNA chiral discrimination towards ofloxacin enantiomers. It is shown that DNA‐Cu(II) complexes exhibit the highest enantioselectivities at the [Cu2+]/base ratio of 0.1. The enantiomeric excess can reach 59% in R‐enantiomer after being adsorbed by the RET‐Cu(II) complex. Stereoselective recognition of ofloxacin enantiomers on the double helix is tunable via external stimulus, providing a programmable desorption process to regenerate DNA. This DNA‐based chiral selector exhibits excellent reusability without apparent loss of enantioselectivity after three cycles of adsorption and desorption. Chirality 26:249–254, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Thermal denaturation and circular dichroism (CD) properties of poly(L -lysine)–DNA complexes vary greatly when these complexes are prepared differently, that is, whether by NaCl-gradient dialysis starting from 2.0 M NaCl or by direct mixing at low salt. These differing properties were investigated in more detail by examining complexes, made by direct mixing in the presence of various concentrations of NaCl, both before and after the NaCl was dialyzed out of the complex solution. The precipitation curves of DNA due to polylysine binding indicate that such binding is noncooperative at zero salt; from 0.1 up to 1.0 M NaCl they exhibit varying degrees of cooperatively. Starting from zero salt, as the NaCl concentration used for complex formation is increased, both the CD and the melting properties of the complexes are shifted from those of directly mixed at zero salt to those of reconstitution: in the CD spectra there is a gradual shift from a B → C transition to a B → ψ transition; thermal denaturation results show a gradual increase in the melting temperatures of both free DNA (tm) and polylysine-bound DNA (tm). The progressive shift from B → C to B → ψ suggests a close relationship between these two transitions. Large aggregates of the complexes do not warrant the appearance of ψ-type CD spectra: ψ-spectra have been obtained in the supernatants of polylysine–DNA complexes made and measured at 1.0 M NaCl while slightly perturbed CD spectra in B → C transition have been observed in turbid solutions of fully covered complexes made at very low salt. If the complexes are made at intermediate salts and dialyzed to a very low salt, although up to 60% of the DNA is still bound by polylysine, the CD spectra of the complexes are shifted back to the B-type CD characteristic of pure DNA.  相似文献   

9.
Double-helical poly(dG-dC) and poly(dA-dT) are DNA analogs in which the interactions between the two strands of the helix are, respectively, either the stronger G/C type or the weaker A/T type along the entire length of macromolecules. Thus, these synthetic polynucleotides can be considered as representatives of the most stable and the least stable DNA. In the investigations presented here, potentiometric titrations and stopped-flow kinetic experiments were carried out in order to compare the pH-induced helix–coil conformations (10°C and 150mM [Na+]) the pH of the helix–coil transition (pHm) is 12.81 for poly(dG-dC) and 11.76 for poly(dA-dT). The unwinding of double-helical poly(dG-dC) initiated by a sudden change in pH was found to be a simple exponential process with rate constants in the range of 200–600 sec?1, depending on the final value of the pH jump. The intramolecular double-helix formation of poly(dG-dC) was studied by lowering the pH of the solutions from a value above pHm to that below pHm in dilute solutions (15.5 ug/ml [polymer]). Under these conditions, the observed rewinding reactions displayed a major and two exponential phases, all of which were independent of polymer concentration. From the comparison of the results of poly(dA-dT) and poly(dG-dT) would unwind faster than poly(dG-dC). However, if the pH jumps are such that they present the same perturbation of these polymers relative to their pHm values, no significant differences exist between the rates of helix–coil conformation changes of poly(dA-dT) and poly(dG-dC).  相似文献   

10.
Novel chiral Schiff base ligands (R)/(S)‐2‐amino‐3‐(((1‐hydroxypropan‐2‐yl)imino)methyl)‐4H‐chromen‐4‐one (L1 and L2) derived from 2‐amino‐3‐formylchromone and (R/S)‐2‐amino‐1‐propanol and their Cu(II)/Zn(II) complexes ( R1 , S1 , R2 , and S2 ) were synthesized. The complexes were characterized by elemental analysis, infrared (IR), hydrogen (1H) and carbon (13C) nuclear magnetic resonance (NMR), electrospray ionization‐mass spectra (ESI‐MS), and molar conductance measurements. The DNA binding studies of the complexes with calf thymus were carried out by employing different biophysical methods and molecular docking studies that revealed that complexes R1 and S1 prefers the guanine–cytosine‐rich region, whereas R2 and S2 prefers the adenine–thymine residues in the major groove of DNA. The relative trend in Kb values followed the order R1 S1 R2 S2 . This observation together with the findings of circular dichroic and fluorescence studies revealed maximal potential of (R)‐enantiomeric form of complexes to bind DNA. Furthermore, the absorption studies with mononucleotides were also monitored to examine the base‐specific interactions of the complexes that revealed a higher propensity of Cu(II) complexes for guanosine‐5′‐monophosphate disodium salt, whereas Zn(II) complexes preferentially bind to thymidine‐5′‐monophosphate disodium salt. The cleavage activity of R1 and R2 with pBR322 plasmid DNA was examined by gel electrophoresis that revealed that they are good DNA cleavage agents; nevertheless, R1 proved to show better DNA cleavage ability. Topoisomerase II inhibitory activity of complex R1 revealed that the complex inhibits topoisomerase II catalytic activity at a very low concentration (25 μM). Furthermore, in vitro antitumor activity of complexes R1 and S1 were screened against human carcinoma cell lines of different histological origin. Chirality 24:977–986, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Aqueous Cu2+ and Cu(II) complexes of salicylate, lysine, and tyrosine decrease the rate of benzylamine oxidation by bovine plasma amine oxidase. Bissalicylato Cu(II) and Cu2+ inhibit non-competitively with respect to benzylamine. Lysine, tyrosine, Cu(EDTA)2?, Zn2+, and Co2+ do not inhibit, and erythrocyte Cu, Zn superoxide dismutase shows only slight inhibition of the amine oxidase. The data are most consistent with an inhibitory mechanism involving dismutation of O2? by the Cu(II) complexes within a site relatively inaccessible to the enzyme superoxide dismutase. Excess lysine significantly decreases inhibition by the bis-lysine complex of Cu(II).  相似文献   

12.
The rate of conformational change of aqueous poly(α-L -lysine) solutions was measured using the electric field pulse relaxation method with conductivity detection. The relaxation time as a function of pH exhibits two maxima. One is assigned to a proton transfer reaction and the other to the helix–coil conformational transition. The helix nucleation parameter and the maximum relaxation time yield the rate constant of helix growth process (kF) according to Schwarz's kinetic theory as kF = 2 × 107 sec?1, which is comparable to that of the poly(glutamic acid) solution. The thermodynamic parameters of the helix growth process are compared with those of poly(glutamic acid).  相似文献   

13.
In this paper are presented the features of copper (II) and zinc (II) heteronuclear complexes of the cyclic peptide—c(HKHGPG)2. The coordination properties of ligand were studied by potentiometric, UV–Vis and CD spectroscopic methods. These experiments were carried out in aqueous solutions at 298 K depending on pH. It turned out that in a physiological pH dominates Cu(II)/Zn(II) complex ([CuZnL]4+) which could mimic the active center of superoxide dismutase (Cu,ZnSOD). In next step we performed in vitro research on Cu,ZnSOD activity for [CuZnL]4+ complex existing in 7.4 pH by the method of reduction of nitroblue tetrazolium (NBT). Also mono- and di-nuclear copper (II) complexes of this ligand were examined. The ability of inhibition free radical reaction were compared for all complexes. The results of these studies show that Cu(II) mono-, di-nuclear and Cu(II)/Zn(II) complexes becoming to new promising synthetic superoxide dismutase mimetics, and should be considered for further biological assays.  相似文献   

14.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Interactions of inosine derivatives with copper(II) were studied in the pH range 1.4–13 in 50% H2O-50% DMSO solution. The distinct pH dependence of the optical spectra observed in copper(II)-inosine complexes are correlated to their respective EPR changes as a function of pH. It was concluded that a simple 1:1 complex of copper(II)-inosine is formed in the pH range 1.4–5.0 and bis complexes are present in the pH 5.0–6.2 region solutions of inosine and Cu(II). From pH 6.2 to 7.8 a diamagnetic, hydroxybridged complex dominates. At pH 7.8–9.2 an insoluble, oxybridged species is formed in addition to the soluble paramagnetic Cu(NI)4 complex. Starting from pH 9.1 the N-polymeric complex is formed which is stable up to pH 12.5, and above pH 12.5 the only species is the Cu(ribose)2 complex.  相似文献   

16.
The introduction of hexavalent T6+ cations in p‐type thermoelectric colusites Cu26T2Ge6S32 (T = Cr, Mo, W) leads to the highest power factors among iono‐covalent sulfides, ranging from 1.17 mW m?1 K?2 at 700 K for W to a value of 1.94 mW m?1 K?2 for Cr. In Cu26Cr2Ge6S32, ZT reaches values close to unity at 700 K. The improvement of the transport properties in these new sulfides is explained on the basis of electronic structure and transport calculations keeping in mind that the relaxation time is significantly influenced by the size and the electronegativity of the interstitial T cation. The rationale is based on the concept of a conductive “Cu–S” network, which in colusites corresponds to the more symmetric parent structure sphalerite. A detailed structural analysis of these colusites shows that the distortion of the conductive network is influenced by the presence in the structure of mixed octahedral–tetrahedral [TS4]Cu6 complexes where the T cations are underbonded to sulfur and form metal–metal interactions with copper, Cu–T distances decreasing from 2.76 Å for W to 2.71 Å for Cr. The interactions between these complexes are responsible for the outstanding electronic transport properties. By contrast, the thermal conductivity is not significantly affected.  相似文献   

17.
Transient electric dichroism has been measured for the ferriheme–poly(L -lysine)[(Lys)n], ferroheme–(Lys)n, and ferroheme–(Lys)n–carbon monoxide (CO) solutions at pH 9–12. The Soret absorption maximum in electronic spectrum (λ), the reduced linear dichroism (ρ) at complete orientation and the calculated angle (?) between the porphyrin plane of a bound heme and the oriented polymer axis are determined for the following complexes: a ferriheme–(Lys)n complex at pH 9.5–10.5 (λ = 420 nm, ρ = 0.50, and ? = 19°), a ferroheme–(Lys)n complex at pH 9.5–10.2 (λ = 432 nm, ρ = 0.77, and ? = 0°), and a ferroheme–(Lys)n–CO complex at pH 9.25 (λ = 430 nm, ρ = 0.38, and ? = 24°). Based on the above data, the validity of the structures of heme–(Lys)n complexes proposed by other investigators is discussed.  相似文献   

18.
The superoxide scavenging activities of copper(II) complexes with the ligands, 6,6′-methylene-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L), and 6,6′-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L′), were investigated by xanthine–xanthine oxidase (X/XO) assays using nitroblue tetrazolium (NBT) as indicator molecule, and the results were compared with respect to the particular type of anion (ClO·4, Cl·, NO·3) on the apical site of the copper(II) complexes. All of the complexes inhibited the reduction of NBT by superoxide radicals, with the [Cu2(L′)](ClO4)2 complex exhibiting the highest scavenging activity against superoxide radicals among the complexes examined. The catalytic efficiency of the complexes for dismutation of superoxide radicals depends on the particular anion liganded to Cu(II) ion in the complexes, and the order of potency was observed to be ClO4 > Cl > NO·3 in phosphate buffer at pH 7.40. The Cu(II)-H4L′ complexes had the lowest IC50 and catalytic rate constant values indicating that the distorted geometry of the Cu(II)-H4L′ complexes influence their catalytic activities for dismutation of superoxide radicals more efficiently. The difference in the activities of the complexes toward superoxide radicals can also be attributed to the nature of the anions on the apical site of the copper(II) complexes and the superoxide dismutase-like activity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 53–59, 1998  相似文献   

19.
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene ([15]pyN5), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN5), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN5 was investigated by 1H NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN5)]2+ determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.  相似文献   

20.
A polarimetric electric-field-jump relaxation apparatus is described and used to determine the relaxation spectrum for the helix–coil transition of poly(α,L -glutamic acid) in water at 24°C. A maximum relaxation time of 1.7 μc occurs at the transition midpoint (pH = 5.9) yielding a rate constant for helical growth of 6 × 107 sec?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号