首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Japanese quail, Coturnix coturnix japonica, eggs were subjected to 2.45-GHz CW microwave radiation at 5 mW/cm2 (SAR = 4.03 mW/g) during the first 12 days of embryogeny. Following hatching the exposed embryos, as well as nonexposed controls, were reared to 22 weeks of age. Humoral immune potential, as indicated by comparable anti-CRBC antibody, IgM and IgG, levels at 0, 4, and 7 days postimmunization in both exposed and control quail was not affected significantly. However, cell-mediated immune potential, measured by the reaction to intradermal injection of phytohemagglutinin-P in the wing web, was reduced in the exposed females, but not in the exposed males. Additionally, total leukocyte numbers and absolute circulating numbers of lymphocytes, monocytes, and heterophils were increased significantly only in the exposed females. These data show that exposure of Japanese quail during embryogenesis reduced cell-mediated immune potential and induced a general leukocytosis in females.  相似文献   

2.
The development of preimplantation embryos after exposure to microwave radiation was studied. Female CD-1 mice were induced to superovulate, mated, and exposed to 2.45-GHz microwave or sham radiation for 3 h at power densities of 9 mW/cm2 and 19 mW/cm2 on either day 2 or 3 of pregnancy (plug day was considered day 1). Another group of mice was exposed to heat stress by placing the dams in an environmental room at an ambient temperature of 38 °C and relative humidity at 62% for 3 h on day 2 of pregnancy. All groups were euthanized on day 4 of pregnancy and embryos were recovered by flushing excised uterine horns. Embryos were examined for abnormalities and classified by the developmental stages. They were then treated with hypotonic solution and dissociated for counting blastomeres. Heat stress caused stunted development of embryos, but no remarkable effect of microwave radiation could be found on the development of preimplantation embryos.  相似文献   

3.
Two studies were performed to determine if repeated exposure of the avian egg to microwaves can alter metabolism, temperature, and growth rate of embryos. Another aim was to supplement conventional heating with microwave heating and provide an optimal temperature for growth. Japanese quail (Coturnix coturnix japonica) eggs were exposed from day 1 through 15 of incubation (8 h/day) to sham or microwave (2,450 MHz) irradiation. Microwave exposures were at two power densities, 5 or 20 mW/cm2, and at three ambient temperatures (Tas), 30.0, 33.1, or 35.4 degrees C. Specific absorption rates for unincubated and 15-day-old incubated eggs were, respectively, 0.76 and 0.66 W kg-1 mW-1 cm-2 (i.e., 3.8 and 3.3 W/kg at 5 mW/cm2 and 15.2 and 13.2 W/kg at 20 mW/cm2). Eggs were concurrently sham exposed at each of five Tas, ranging from 27.9 to 37.5 degrees C. Tests were conducted during the 16th day of incubation (i.e., 1 day post-treatment), in the absence of microwaves, to determine metabolic rate of embryos and internal and external egg temperatures at different Tas. Repeated exposures to microwaves at 5 and 20 mW/cm2 at the same Ta (30 degrees C) increased wet-embryo mass on the 16th day by an average, respectively, of 9% and 61% when compared with predicted masses for embryos exposed at the same Ta in the absence of microwave radiation. There was no reliable indication, from post-treatment tests and comparisons with control embryos of similar mass, that repeated exposure to microwave radiation resulted in abnormal physiological development. Microwave radiation can be used to increase egg temperature and embryonic growth rate at Tas below normal incubation level without altering basic metabolic and thermal characteristics of the developing bird.  相似文献   

4.
Fertile eggs of the Coturnix quail were exposed twice a day for 30 min to 2.45-GHz continuous wave radiation at power densities of 25 or 50 mW cm-2 throughout the 17-day incubation period. Other eggs were exposed to 20 degrees C or 24 degrees C temperatures twice daily. Repeated exposures to 20 degrees C, 24 degrees C, or 25 mW cm-2 did not reduce hatchability. Irradiation at 50 mW cm-2 lowered hatchability, probably as a result of high egg temperatures. Hatchlings that had been irradiated by microwaves as embryos had normal growth rates and no obvious developmental abnormalities.  相似文献   

5.
1. Coturnix coturnix japonica eggs were exposed to 2.45-GHz continuous wave microwave radiation at an incident power density of 5 mW/cm2 (SAR = 4 mW/g) during the first 12 days of embryogeny. After hatching, leukocyte differential changes were measured in response to an injection with Alectoris graeca chukar red blood cells (CRBC) and in response to a phytohemagglutinin (PHA) injection in irradiated and nonirradiated (sham) quail of both sexes. 2. Microwave irradiation did not affect anti-CRBC hemagglutinin titers, PHA-evoked dermal swelling or leukocyte numbers and percentages. 3. In both the irradiated and sham irradiated males, lymphocyte percentages decreased while heterophil percentages increased after CRBC or PHA injection. 4. In ovo irradiation with microwaves did not alter the time course of either a humoral immune response or a cell-mediated immune response in Japanese quail.  相似文献   

6.
1. Coturnix coturnix japonica eggs were exposed to 2.45-GHz continuous wave microwave radiation at an incident power density of 5 mW/cm2 (and a specific rate of 4 mW/g) during the first 12 days of embryogeny. After hatching, hematological changes in response to an acute hemorrhage were measured in exposed and nonexposed (control) juveniles of both sexes. 2. Exposure did not affect erythroid cell numbers either before or after hemorrhage. 3. Exposure affected the recovery of lymphocyte and heterophil numbers after hemorrhage, but the effect was sex-limited. 4. These data indicate that microwave irradiation during embryogeny in ovo affects the ability of Japanese quail to recover from an acute and voluminous hemorrhage and that these radiation effects are sex-limited and consistent with a previous report.  相似文献   

7.
Japanese quail (Coturnix coturnix japonica) embryos were irradiated continuously in ovo with 2.45-GHz continuous wave radiation during the first 12 days of embryogenesis at an incident power of 5 mW/cm2 and a specific absorption rate of 4.03 mW/g. The internal temperature of irradiated and nonirradiated (sham) eggs was 37.5 +/- 0.3 degrees C, which is the optimum temperature for incubating quail eggs. At 35 days after hatching irradiated and sham-irradiated males were paired with irradiated or sham-irradiated females and daily records of reproductive performance were collected through 224 days of age. Progeny were hatched from each of the male-female pairs, and progeny reproductive performance was measured from 35 through 168 days of age. Hatchability was not affected by irradiation during embryogeny. Mortality after hatching, egg production, egg weight, fertility, hatchability of eggs produced, and reproductive performance of the progeny were not affected by irradiation during embryogeny. These observations indicate that irradiation of quail embryos with low-level microwave radiation does not affect the reproductive capacity of the hatchlings or of progeny produced from quail irradiated during incubation.  相似文献   

8.
Adult honeybees, confined singly or in small clusters, were exposed for 0.5, 6, and 24 hours to 2.45-GHz continuous wave microwave radiation at power densities of 3, 6, 12, 25, and 50 mW/cm2. Following exposure, bees were held in the incubator for 21 days to determine the consumption of sucrose syrup and to observe mortality. No significant differences were found between microwave-treated and sham-treated or control bees.  相似文献   

9.
Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.  相似文献   

10.
In order to demonstrate possible specific effects of microwaves at the cellular level V-79 Chinese hamster cells were exposed to 2.45-GHz radiation at power levels of 20–200 mW/cm2 and at specific absorption rates of 10–100 mW/g. Intracellular cytoplasmic changes were observed by fluorescence polarization using a method based on the intracellular enzymatic hydrolysis of nonfluorescent fluorescein diacetate (FDA). At levels of absorbed energy below 90 J/g, modifications of microviscosity and mitochondrial state were absent, but a slight stimulation of enzymatic hydrolysis of FDA was observed which may be explained by microwave-induced alterations of cellular membranes possibly due to differences in heating pattern of microwaves compared to water-bath heating. At levels of absorbed energy above 90 J/g, the decrease of enzymatic hydrolysis of FDA, increase in degree of polarization, and increase of permeation of the fluorescent marker correlated well with the decrease in cell viability as measured by the exclusion of trypan blue. At equal absorbed energy, microwaves were found to exert effects comparable to classical heating except that permeation was slightly more affected by microwave than by classical heating. This suggests that membrane alteration produced by microwaves might differ from those induced by classical heating or that microwaves may have heated the membrane to higher temperatures than did classical heating.  相似文献   

11.
The expression of Japanese Encephalitis Virus (JEV) lethality in mice requires entry of the virus into the central nervous system. This entry is presumably through the capillary endothelial cells (CEC), because entry between CECs is inhibited by bands of circumferential tight-junctions. A viremic stage occurs during the first 4 to 5 days after JEV administration in mice, and both microwave radiation (2.45-GHz, continuous wave, 10-min exposure) and hypercarbia were employed to increase CEC permeability to JEV. Exposure to microwaves at power densities of 10-50 mW/cm2 resulted in a dose-dependent increase in JEV-induced lethality. Mice did not become tolerant or sensitized to microwave potentiation of JEV-induced mortality because 4 daily exposures at 10 or 50 mW/cm2 (SARS, approximately 24-98 W/kg) did not alter the lethality pattern to subsequent microwave radiation of JEV-exposed animals. Similarly, hypercarbia (5, 10, and 20% CO2) was observed to produce a dose-dependent increase in JEV-induced lethality. Both microwave radiation and hypercarbia are thought to promote pinocytosis in CNS capillary endothelial cells. This may be one mechanism by which they enhance JEV-induced lethality in adult Swiss-Cox mice.  相似文献   

12.
1. Japanese quail eggs were exposed to 2.45 GHz continuous wave microwave radiation at an incident power density of 5 mW/cm2 and a specific absorption rate of 4.03 mW/g during the first 12 days of embryogeny. 2. After hatching, serum biochemical changes in response to hemorrhagic stress were measured following a hemorrhage of 30% of the calculated total blood volume. 3. Lactate dehydrogenase, beta-glucuronidase, acid phosphatase, glucose and protein were not affected by microwave irradiation during embryogeny either before or after hemorrhage. 4. Microwave irradiation in ovo affected the response of serum glutamic oxaloacetic transaminase activity to hemorrhagic stress in Japanese quail.  相似文献   

13.
The chronotropic and inotropic effects of 2.45-GHz continuous wave (CW) microwave radiation were investigated in the isolated spontaneously beating rat atria. Isolated atria were placed in specially designed tubes inserted into a waveguide exposure system. The atria were then irradiated for a period of 30 min, followed by a 30-min recovery period. The control atria were prepared simultaneously and sham exposed. Experiments were conducted at two temperatures, 22 and 37 °C, and two specific absorption rates, 2 mW/g and 10 mW/g. At both temperatures the rate of atrial contraction was not altered by a 30-min exposure at either 2 or 10 mW/g. The average rate (beats per min) was approximately 100 for both the control and exposed atria at 22 °C and 215 beats per min for both the control and exposed atria at 37 °C. In addition, no inotropic effects on the spontaneously beating atria were noted at any exposure level. These data suggest that 2.45-GHz CW microwave radiation at these intensities has no overt effect on these variables in isolated rat atria.  相似文献   

14.
Salmonella typhimurium and Drosophila melanogaster were exposed to continuous wave (CW) 2.45-GHz electromagnetic radiation, pulsed 3.10-GHz electromagnetic radiation, CW 27.12-MHz magnetic fields, or CW 27.12-MHz electric fields (only Drosophila). The temperatures of the treated sample and the nonexposed control sample were kept constant. The temperature difference between exposed and control samples was less than +/- 0.3 degrees C. Ames' assays were made on bacteria that had been exposed to microwaves (SAR 60-130 W/kg) or RF fields (SAR up to 20 W/kg) when growing exponentially in nutrient broth. Survival and number of induced revertants to histidine prototrophy were determined by common plating techniques on rich and minimal agar plates. The Drosophila test consisted of a sensitive somatic system where the mutagenicity was measured by means of mutations in a gene-controlling eye pigmentation. In none of these test systems did microwave or radiofrequency fields induce an elevated mutation frequency. However, a significantly higher concentration of cells was found in the bacterial cultures exposed to the 27-MHz magnetic field or 2.45-GHz CW and 3.10-GHz pulsed microwave radiation.  相似文献   

15.
Coturnix coturnix japonica eggs were exposed to 2.45 GHz continuous wave microwave radiation at an incident power density of 5 mW/cm2 (SAR = 4 mW/g) during the first 12 days of embryogeny. After hatching, hematologic changes in response to an acute hemorrhage were measured in exposed and nonexposed (control) juveniles and adults of both sexes. Reticulocyte numbers and percentages were depressed below control numbers at 24 hr postphlebotomy in exposed adult females. Lymphocyte numbers were depressed below control levels at 24 hr postphlebotomy in exposed juvenile and adult males. At 72 hr heterophil numbers were depressed in exposed juvenile and adult males. These data suggest that microwave irradiation during embryogeny affects the ability of Japanese quail to recover from an acute and voluminous hemorrhage and that these radiation effects are small.  相似文献   

16.
The effects of pulsed-(PW) and continuous-wave (CW) 2.8-GHz microwaves were compared on the performance of rodents maintained by a temporally defined schedule of positive reinforcement. The schedule involved food-pellet reinforcement of behavior according to a differential-reinforcement-of-low-rate (DRL) contingency. The rats were independently exposed to PW and to CW fields at power densities ranging from 1 to 15 mW/cm2. Alterations of normal performance were more pronounced after a 30-minute exposure to the PW field than to the CW field. The rate of emission of appropriately timed responses declined after exposure to PW at 10 and 15 mW/cm2, whereas exposure at the same power levels to the CW field did not consistently affect the rate of responding. Change in performance associated with microwave exposure was not necessarily related to a general decline in responding: in some instances, increases in overall rates of responding were observed.  相似文献   

17.
Rat brain was exposed to 591-MHz, continuous-wave (CW) microwaves at 13.8 or 5.0 mW/cm2 to determine the effect on nicotinamide adenine dinucleotide, reduced (NADH), adenosine triphosphate (ATP) and creatine phosphate (CP) levels. On initiation of the in vivo microwave exposures, fluorimetrically determined NADH rapidly increased to a maximum of 4.0%–12.5% above pre-exposure control levels at one-half minute, then decreased slowly to 2% above control at three minutes, finally increasing slowly to 5% above control level at five minutes. ATP and CP assays were performed on sham- and microwave-exposed brain at each exposure time. At 13.8 mW/cm2, brain CP level was decreased an average of 39.4%, 41.1%, 18.2%, 13.1%, and 36.4% of control at exposure points one-half, one, two three, and five minutes, respectively, and brain ATP concentration was decreased an average of 25.2%, 15.2%, 17.8%, 7.4%, and 11.2% of control at the corresponding exposure periods. ATP and CP levels of rat brain exposed to 591-MHz cw microwaves at 5 mW/cm2 for one-half and one minute were decreased significantly below control levels at these exposure times, but were not significantly different from the 13.8 mW/cm2 exposures. For all exposures, rectal temperature remained constant. Heat loss through the skull aperture caused brain temperature to decrease during the five-minute exposures. This decrease was the same in magnitude for experimental and control subjects. Changes in NADH, ATP, and CP levels during microwave exposure cannot be attributed to general tissue hyperthermia. The data support the hypothesis that microwave exposure inhibits mitochondrial electron transport chain function, which results in decreased ATP and CP levels in brain.  相似文献   

18.
《Free radical research》2013,47(5):511-525
Abstract

Electromagnetic radiations are reported to produce long-term and short-term biological effects, which are of great concern to human health due to increasing use of devices emitting EMR especially microwave (MW) radiation in our daily life. In view of the unavoidable use of MW emitting devices (microwaves oven, mobile phones, Wi-Fi, etc.) and their harmful effects on biological system, it was thought worthwhile to investigate the long-term effects of low-level MW irradiation on the reproductive function of male Swiss strain mice and its mechanism of action. Twelve-week-old mice were exposed to non-thermal low-level 2.45-GHz MW radiation (CW for 2 h/day for 30 days, power density = 0.029812 mW/cm2 and SAR = 0.018 W/Kg). Sperm count and sperm viability test were done as well as vital organs were processed to study different stress parameters. Plasma was used for testosterone and testis for 3β HSD assay. Immunohistochemistry of 3β HSD and nitric oxide synthase (i-NOS) was also performed in testis. We observed that MW irradiation induced a significant decrease in sperm count and sperm viability along with the decrease in seminiferous tubule diameter and degeneration of seminiferous tubules. Reduction in testicular 3β HSD activity and plasma testosterone levels was also noted in the exposed group of mice. Increased expression of testicular i-NOS was observed in the MW-irradiated group of mice. Further, these adverse reproductive effects suggest that chronic exposure to nonionizing MW radiation may lead to infertility via free radical species-mediated pathway.  相似文献   

19.
Pregnant CD-1 mice were exposed to 2.45-GHz continuous wave microwave radiation at an incident power density of 30 mW/cm2. The local specific absorption rate near the uterine area (deep colonic location), as determined from time-temperature profiles measured with a Vitek thermistor probe, was 40.2 mW/g. Groups of mice were exposed 8 hr per day through Days 1-6 or 6-15 of pregnancy. Other groups of animals were exposed to an elevated ambient temperature of 31 degrees C which increased the colonic temperature 2.3 degrees C, the same as that produced by the microwaves. Sham-irradiated groups of animals were treated exactly the same as the microwave-exposed animals. For the two conditions, temperature exposed and sham exposed, two groups of animals were used. One group was handled in the same manner as the microwave-irradiated group and the other group was not handled so as to evaluate the effects of stressing the animals by handling. Eleven groups of animals were used in the complete study: five groups for gestational Days 1-6, five groups for gestational Days 6-15, and one group of cage control animals. On Day 18 of gestation the dams of all experimental groups were sacrificed and their reproductive status was determined. The fetuses were examined for visceral and skeletal alterations. Brain cholinesterase activity and histology were evaluated in the groups exposed on Days 6-15. The results show that microwave radiation increases embryo lethality at the early stages of gestation (exposure Days 1-6). Fetal toxicity and teratogenicity were not significantly increased by exposure to microwaves on either Days 1-6 or 6-15 of gestation. Cholinesterase activity and histology of the brain of 18-day-old fetuses were not adversely affected.  相似文献   

20.
Increasing applications of electromagnetic fields are of great concern with regard to public health. Several in vitro studies have been conducted to detect effects of microwave exposure on the genetic material leading to negative or questionable results. The micronucleus (MN) assay which is proved to be a useful tool for the detection of radiation exposure-induced cytogenetic damage was used in the present study to investigate the genotoxic effect of microwaves in human peripheral blood lymphocytes in vitro exposed in G(0) to electromagnetic fields with different frequencies (2.45 and 7.7GHz) and power density (10, 20 and 30mW/cm(2)) for three times (15, 30 and 60min). The results showed for both radiation frequencies an induction of micronuclei as compared to the control cultures at a power density of 30mW/cm(2) and after an exposure of 30 and 60min. Our study would indicate that microwaves are able to cause cytogenetic damage in human lymphocytes mainly for both high power density and long exposure time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号