首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
One hundred and fifteen clonal, unialgal strains were isolated and tested for their ability to grow over a range of temperatures from 2 to 40° C. Responses of 63 strains isolated from habitats that were 6° C when sampled and 52 strains isolated from habitats that were 20° C when sampled showed trends toward increasing adaptation to cold or warm temperatures commensurate with their seasonal in situ temperatures. Based on temperature-growth responses alone, 24% of the plankton isolates and 17% of the periphyton isolates could be perennial within the natural habitats. At 5° C, 56% of the warm water plankton isolates and 48% of the warm water periphyton isolates were incapable of growth and, therefore, probably could not be important components of the winter algal community. Likewise at 25° C, 25% of the cold water plankton isolates and 13% of the cold water periphyton isolates were incapable of growth. Thus, temperature alone probably is an important variable regulating seasonal changes in algal community structure. Pollution of these habitats by a thermal enrichment averaging + 5° C year-round could effect a pronounced change in algal species composition because many more taxa could be perennial and more taxa would be incapable of growth during naturally warm periods.  相似文献   

2.
The temperature requirements for growth and upper temperature tolerance were determined in 16 macroalgal species collected on Disko Island (Greenland). The upper survival temperatures were examined in 1°C steps, and growth measured at 5°C intervals between 0 and 20°C using a refined method, where the fresh weight was determined weekly or fortnightly over a period of 5 or 6 weeks. To express temperature-growth responses, growth rates of temperature-acclimated plants were taken. Two groups with different temperature requirements were identified: (1) A stenothermal group includingAcrosiphonia arcta, Acrosiphonia sonderi, Urospora penicilliformis, Devaleraea ramentacea, Desmarestia aculeata, Pilayella littoralis, growing between 0 and (10 to) 15 (or 20)°C with optima between 0 and 10°C. The upper survival temperatures in these species and inChromastrum secundatum, Chromastrum virgatulum, Chordaria flagelliformis were between 17 and 23°C (duration of experiment: 2 weeks). (2) A eurythermal group includingEnteromorpha clathrata, Enteromorpha intestinalis andPolysiphonia urceolata growing between 0 and 20°C with growth optima at 10 or 15°C. The upper survival temperatures in these species and inChaetomorpha tortuosa, Bangia atropurpurea andEudesme virescens were between 24 and 31°C. These algal species showed little adaptation to the Arctic temperatures. In contrast, algae from the first group exhibited a relatively high adaptation to low temperatures — approaching the low temperature requirements of Antarctic algae. The results are discussed in relation to the geographic distribution of individual species.  相似文献   

3.
Mats of coenocytic “snow molds” are commonly observed covering the soil and litter of alpine and subalpine areas immediately following snow melt. Here, we describe the phylogenetic placement, growth rates, and metabolic potential of cold-adapted fungi from under-snow mats in the subalpine forests of Colorado. SSU rDNA sequencing revealed that these fungi belong to the zygomycete orders Mucorales and Mortierellales. All of the isolates could grow at temperatures observed under the snow at our sites (0°C and −2°C) but were unable to grow at temperatures above 25°C and were unable to grow anaerobically. Growth rates for these fungi were very high at −2°C, approximately an order of magnitude faster than previously studied cold-tolerant fungi from Antarctic soils. Given the rapid aerobic growth of these fungi at low temperatures, we propose that they are uniquely adapted to take advantage of the flush of nutrient that occurs at the soil–snow interface beneath late winter snow packs. In addition, extracellular enzyme production was relatively high for the Mucorales, but quite low for the Mortierellales, perhaps indicating some niche separation between these fungi beneath the late winter snow pack.  相似文献   

4.
Psychro-tolerant nematophagous fungi from the maritime Antarctic   总被引:1,自引:0,他引:1  
N. F. Gray 《Plant and Soil》1982,64(3):431-435
Summary The present investigation examines the comparative growth rates, at various temperatures between 4 and 30°C, of two nematophagous fungiMonacrosporium ellipsosporum (Preuss), (Grove), Cooke and Dickinson andM. cionapagum (Drechsler), (Subramanian), Cooke and Dickinson, both isolated from the Antarctic and from Britain. No psychrophilic species were found although the results clearly show that both the Antarctic isolates were psychro-tolerant, displaying lower minimum, optimum and maximum temperatures for growth than the British isolates. A modified form ofM. ellipsosporum isolated from the Antarctic grew only between 4 and 15°C, indicating it to be much better adapted to such cold habitats than the other isolates examined.  相似文献   

5.
Maritime Antarctic freshwater habitats are amongst the fastest changing environments on Earth. Temperatures have risen around 1°C and ice cover has dramatically decreased in 15 years. Few animal species inhabit these sites, but the fairy shrimp Branchinecta gaini typifies those that do. This species survives up to 25°C daily temperature fluctuations in summer and passes winter as eggs at temperatures down to -25°C. Its annual temperature envelope is, therefore around 50°C. This is typical of Antarctic terrestrial species, which exhibit great physiological flexibility in coping with temperature fluctuations. The rapidly changing conditions in the Maritime Antarctic are enhancing fitness in these species by increasing the time available for feeding, growth and reproduction, as well as increasing productivity in lakes. The future problem these animals face is via displacement by alien species from lower latitudes. Such invasions are now well documented from sub-Antarctic sites. In contrast the marine Antarctic environment has very stable temperatures. However, seasonality is intense with very short summers and long winter periods of low to no algal productivity. Marine animals grow slowly, have long generation times, low metabolic rates and low levels of activity. They also die at temperatures between +5°C and +10°C. Failure of oxygen supply mechanisms and loss of aerobic scope defines upper temperature limits. As temperature rises, their ability to perform work declines rapidly before lethal limits are reached, such that 50% of populations of clams and limpets cannot perform essential activities at 2–3°C, and all scallops are incapable of swimming at 2°C. Currently there is little evidence of temperature change in Antarctic marine sites. Models predict average global sea temperatures will rise by around 2°C by 2100. Such a rise would take many Antarctic marine animals beyond their survival limits. Animals have 3 mechanisms for coping with change: they can 1) use physiological flexibility, 2) evolve new adaptations, 3) migrate to better sites. Antarctic marine species have poor physiological scopes, long generation times and live on a continent whose coastline covers fewer degrees of latitude than all others. On all 3 counts Antarctic marine species have poorer prospects than most large faunal groups elsewhere.  相似文献   

6.
Stichococcus, a genus of green algae, distributes in ice-free areas throughout Antarctica. To understand adaptive strategies of Stichococcus to permanently cold environments, the physiological responses to temperature of two psychrotolerants, S. bacillaris NJ-10 and S. minutus NJ-17, isolated from rock surfaces in Antarctica were compared with that of one temperate S. bacillaris FACHB753. Two Antarctic Stichococcus strains grew at temperature from 4 to 25°C, while the temperate strain could grow above 30°C but could not survive at 4°C. The photosynthetic activity of FACHB753 at lower than 10°C was less than that of Antarctic algae. Nitrate reductase in NJ-10 and NJ-17 had its optimal temperature at 20°C, in comparison, the maximal activity of nitrate reductase in FACHB753 was found at 25°C. When cultured at 4–15°C a large portion of unsaturated fatty acids in the two Antarctic species was detected and the regulation of the degree of unsaturation of fatty acids by temperature was observed only above 15°C, though the content of the major unsaturated fatty acid αC18:3 in FACHB753 decreased with the temperatures elevated from 10 to 25°C. Elevated nitrate reductase activity and photosynthetic rates at low temperatures together with the high proportion of unsaturated fatty acids contribute to the ability of the Antarctic Stichococcus to thrive.  相似文献   

7.
Although it is generally believed that cyanobacteria have high temperature optima for growth (> 20° C), mat-foming cyanobacteria are dominant in many types of lakes, streams, and ponds in the Arctic and Antarctic. We studied the effect of temperature on growth (μ) and relative pigment composition of 27 isolates of cyanobacteria (mat-forming Oscillatoriaceae) from the Arctic, subarctic, and Antarctic to investigate whether they are a) adapted to the low temperature (i.e. psychrophilic) or b) tolerant of the low temperature of the polar regions (i.e. psychrotrophic). We also derived a parabolic function that describes both the rise and the decline of cyanobacterial growth rates with increasing temperature. The cyanobacteria were cultured at seven different temperatures (5°-35° C at 5° C intervals), with continuous illumination of 225 μmol photons.m−2.s−1. The parabolic function fits the μ-temperature data with 90% confidence for 75% of the isolates. Among the 27 isolates of cyanobacteria studied, the temperature optima (Topt) for growth ranged from 15° to 35° C, with an average of 19.9° C. These results imply that most polar cyanobacteria are psychrotrophs, not psychrophiles. The cyanobacteria grew over a wide temperature range (typically 20° C) but growth rates were low men at Topt (average μmax of 0.23 ± 0.069 d−1). Extremely slow growth rates at low temperature and the high temperature for optimal growth imply that the cyanobacteria are not adapted genetically to cold temperatures, which characterize their ambient environment. Other competitive advantages such as tolerance to desiccation, freeze—thaw cycles, and bright, continuous solar radiation may contribute to their dominance in polar aquatic ecosystems.  相似文献   

8.
Three species of Arctic to cold-temperate amphi-Atlantic algae, all occurring also in the North Pacific, were tested for growth and/or survival at temperatures of −20 to 30°C. When isolates from both western and eastern Atlantic shores were tested side-by-side, it was found that thermal ecotypes may occur in such Arctic algae.Chaetomorpha melagonium was the most eurythermal of the 3 species. Isolates of this alga were alike in temperature tolerance and growth rate but Icelandic plants were more sensitive to the lethal temperature of 25°C than were more southerly isolates from both east and west. With regard toDevaleraea ramentacea, one Canadian isolate grew extraordinarily well at −2 and 0°C, and all tolerated temperatures 2–3°C higher than the lethal limit (18–20°C) of isolates from Europe. ConcerningPhycodrys rubens, both eastern and western isolates died at 20°C but European plants tolerated the lethal high temperature longer, were more sensitive to freezing, and attained more rapid growth at optimal temperatures. The intertidal species,C. melagonium andD. ramentacea, both survived freezing at −5 and −20°C, at least for short time periods.C. melagonium was more susceptible thanD. ramentacea to desiccation. Patterns of thermal tolerance may provide insight into the evolutionary history of seaweed species.  相似文献   

9.
Temperature tolerances and relative growth rates were determined for different isolates of the tropical to warm temperate seaweed species Cladophoropsis membranacea (C. Agardh) Boergesen (Siphonodadales, Chlorophyta) and some related taxa. Most isolates of C membranacea survived undamaged at 18° C for at least 8 weeks. Lower temperatures (5°–15°C) were tolerated for shorter periods of time but caused damage to cells. All isolates survived temperatures up to 34° C, whereas isolates from the eastern Mediterranean and Red Sea survived higher temperatures up to 36°C. Growth occurred between 18° and 32° C, but an isolate from the Red Sea had an extended growth range, reaching its maximum at 35°C. Struvea anastomosans (Harvey) Piccone & Grunow, Cladophoropsis sundanensis Reinbold, and an isolate of C. membranacea from Hawaii were slightly less cold- tolerant, with damage occurring at 18°C. Upper survival temperatures were between 32° and 36° C in these taxa. Temperature response data were mapped onto a phylogenetic tree. Tolerance for low temperatures appears to be a derived character state that supports the hypothesis that C. membranacea originated from a strictly tropical ancestor. Isolates from the Canary Islands, which is near the northern limit of distribution, are ill adapted to local temperature regimes. Isolates from the eastern Mediterranean and Red Sea show some adaptation to local temperature stress. They are isolated from those in the eastern Atlantic by a thermal barrier at the entrance of the Mediterranean.  相似文献   

10.
The linear growth rates of Gaeumannomyces graminis var. graminis, G. graminis var. tritici, Phialophora radicicola var. graminicola and a lobed hyphopodiate Phialophora sp. were studied on agar at various temperatures between 5 and 30 °C and on wheat roots at two temperature regimes (12 h at 7°/12 h at 13 °C and 12 h at 17°/12 h at 23 °C). On agar at 30 °C, the isolates of G. graminis graminis grew faster than those of G. graminis tritici and Phialophora sp. but three isolates of G. g. graminis grew more slowly than the other two fungi at 5 and 10 °C. Two other isolates of G. g. graminis were cold-tolerant and had growth rates comparable to those of G. g. tritici and Phialophora sp. at 10 °C. The growth rates of Australian isolates of P. radicicola graminicolu were similar to that of a British isolate and were about a third to a half those of the other three fungi at most temperatures. The growth rates of the fungi on wheat roots at the low and high temperature regimes were correlated with the growth rates on agar at 10 and 20 °C respectively. The correlation was better at low temperatures r= 0.81) than at high temperatures (r = 0.62). Cross-protection experiments using two G. g. graminis isolates which grow poorly at temperatures below 15 °C and a cold-tolerant isolate each of G. g. graminis and Phialophora sp. showed that, while all four fungi protected wheat against take-all at high temperatures (17/23 °C) as evidenced by less severe disease and significantly greater dry weights, only the cold-tolerant fungi were effective at low temperatures (7/13 °C). The use of cold-tolerant isolates of avirulent fungi in field experiments may result in better protection in the early stages of wheat growth when Australian soil temperatures are mostly below 15 °C.  相似文献   

11.
The temperature requirement for growth and the upper survival temperatures (USTs) of 15 Antarctic red algal species collected on King George Island (South Shetland Islands) and Signy Island (South Orkney Islands) were determined. Two groups with different temperature requirements were identified. 1) A “eurythermal” group includes Rhodymenia subantarctica, Phyllophora ahnfeltioides, Gymnogongrus antarcticus, and Rhodochorton purpureum, growing between 0° and 10°C with optimum values at (0°) 5°(l0°)C. The USTs of these species and of Porphyra endiviifolium, Delesseria lancifolia, and Bangia atropurpurea were between 22° and 16°C. These species survived temperatures in a similar range as most endemic Arctic or Arctic/cold-temperate species but exhibited a lower temperature demand for growth, suggesting an earlier contact with low temperatures than Arctic species. 2) A stenothermal group includes Pantoneura plocamioides, Myriogramme mangini, Ballia callitricha, Phyllophora antarctica, Gigartina skottsbergii, Georgiella confluens, and Plocamium cartilagineum growing at 0° or ≤5°C with optimum values at 0° or 5°C. The USTs of these species and of Phycodrys austrogeorgica were between 14° and 7°C. The species of this group must have had an even earlier contact with the Antarctic cold-water environment than species of the “eurythermal” group. Gigartina skottsbergii, Georgiella confluens, Plocamium cartilagineum, and Pantoneura plocamioides were probably exposed longer to low temperatures than the other species of this group or Antarctic green and brown algae because they show the lowest temperature requirements so far determined in seaweeds. The results are discussed in the context of present local temperature regimes at the localities where the isolates were collected. Moreover, an attempt was made to explain the geographic distribution of individual species by the temperature requirements determined in this study. Only a few of the distribution limits are determined by temperature growth and/or survival characteristics. In many species (Rhodymenia subantarctica, Ballia callitricha, Gigartina skottsbergii, Bangia atropurpurea, Rhodochorton purpureum, and Plocamium cartilagineum), the development of temperature ecotypes is evident.  相似文献   

12.
Oscillatorian cyanobacteria dominate benthic microbial mat communities in many polar freshwater ecosystems. Capable of growth at low temperatures, all benthic polar oscillatorians characterized to date are psychrotolerant (growth optima > 15° C) as opposed to psychrophilic (growth optima ≤ 15° C). Here, psychrophilic oscillatorians isolated from meltwater ponds on Antarctica's McMurdo Ice Shelf are described. Growth and photosynthetic rates were investigated at multiple temperatures, and compared with those of a psychrotolerant isolate from the same region. Two isolates showed a growth maximum at 8° C, with rates of 0.12 and 0.08 doublings·d ? 1, respectively. Neither displayed detectable growth at 24° C. The psychrotolerant isolate showed almost imperceptible growth at 4° C and a rate of 0.9 doublings·d ? 1 at its optimal temperature of ~23° C. In both photosynthesis versus irradiance and photosynthesis versus temperature experiments, exponentially growing cultures were acclimated for 14 days at 3, 8, 12, 20, and 24° C under saturating light intensity, and [14C] photoincorporation rates were measured. Psychrophilic isolates acclimated at 8° C showed greatest photosynthetic rates; those acclimated at 3° C were capable of active photosynthesis, but photoincorporation was not detected in cells acclimated at 20 and 24° C, because these isolates were not viable after 14 days at those temperatures. The psychrotolerant isolate, conversely, displayed maximum photosynthetic rates at 24° C, though photoincorporation was actively occurring at 3° C. Within acclimation temperature treatments, short‐term photosynthetic rates increased with increasing incubation temperature for both psychrophilic and psychrotolerant isolates. These results indicate the importance of temperature acclimation before assays when determining optimal physiological temperatures. All isolates displayed photosynthetic saturation at low light levels (<128 μmol·m ? 2·s ? 1) but were not photoinhibited at the highest light treatment (233 μmol·m ? 2·s ? 1). Field studies examining the impact of temperature on photosynthetic responses of intact benthic mats, under natural solar irradiance, showed the mat communities to be actively photosynthesizing from 2 to 20° C, with maximum photoincorporation at 20° C, as well as capable of a rapid response to an increase in temperature. The rarity of psychrophilic cyanobacteria, relative to psychrotolerant strains, may be due to their extremely slow growth rates and inability to take advantage of occasional excursions to higher temperatures. We suggest an evolutionary scenario in which psychrophilic strains, or their most recent common ancestor, lost the ability to grow at higher temperatures while maintaining a broad tolerance for fluctuations in other physical and chemical parameters that define shallow meltwater Antarctic ecosystems.  相似文献   

13.
Forty-nine strains of filamentous, mat-forming cyanobacteria isolated from the Arctic, subarctic and Antarctic environments were screened for their potential use in outdoor waste-water treatment systems designed for cold north-temperate climates. The most promising isolate (strain E18, Phormidium sp. from a high Arctic lake) grew well at low temperatures and formed aggregates (flocs) that could be readily harvested by sedimentation. We evaluated the growth and nutrient uptake abilities of E18 relative to a community of green algae (a Chlorococcalean assemblage, denoted Vc) sampled from a tertiary treatment system in Valcartier, Canada. E18 had superior growth rates below 15°C Canada. (μ = 0.20 d-1 at 10°C under continuous irradiance of 225 μmol photon m-2 s-1) and higher phosphate uptake rates below 10°C (k = 0.050 d-1 at 5°C) relative to Vc (μ=0.087 d-1 at 10°C and k = 0.020 d-1 at 5°C, respectively). The green algal assemblage generally performed better than E18 at high temperatures (at 25°C, μ = 0.39 d-1 and k = 0.34 d-1 for Vc; μ = 0.28 d-1 and k = 0.33 d-1 for E18). However, E18 removed nitrate more efficiently than Vc at most temperatures including 25°C. Polar cyanobacteria such as strain E18 are appropriate species for waste-water treatment in cold climates during spring and autumn. Under warmer summer conditions, fast-growing green algae such as the Vc assemblage are likely to colonize and dominate, but warm-water Phormidium isolates could be used at that time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Two species of cold-temperate algae from the North Atlantic Ocean,Polyides rotundus andFurcellaria lumbricalis, were tested for growth and survival over a temperature range of −5 to 30 °C. In comparisons of eastern and western isolates, bothF. lumbricalis, a North Atlantic endemic, andP. rotundus, a species having related populations in the North Pacific, were quite homogeneous.F. lumbricalis tolerated −5 to 25°C and grew well from 0 to 25°C, with optimal growth at 10–15 °C.P. rotundus tolerated −5 to 27°C, grew well from 5 to 25°C, and had a broad optimal range of 10–25°C. Both species tolerated 3 months in darkness at 0°C. In neither case could any geographic boundary be explained in terms of lethal seasonal temperatures, suggesting that these species are restricted in distribution by strict thermal and/or daylength requirements for reproduction. The hypothesis that northern species are more homogeneous than southern taxa in terms of thermal tolerance was supported. A second hypothesis, that disjunct cold-temperate species should be more variable than pan-Arctic species, was not supported.  相似文献   

15.
Heteropolymer humic substances (HS) are the largest constituents of soil organic matter and are key components that affect plant and microbial growth in maritime Antarctic tundra. We investigated HS decomposition in Antarctic tundra soils from distinct sites by incubating samples at 5°C or 8°C (within a natural soil thawing temperature range of −3.8°C to 9.6°C) for 90 days (average Antarctic summer period). This continuous 3-month artificial incubation maintained a higher total soil temperature than that in natural conditions. The long-term warming effects rapidly decreased HS content during the initial incubation, with no significant difference between 5°C and 8°C. In the presence of Antarctic tundra soil heterogeneity, the relative abundance of Proteobacteria (one of the major bacterial phyla in cold soil environments) increased during HS decomposition, which was more significant at 8°C than at 5°C. Contrasting this, the relative abundance of Actinobacteria (another major group) did not exhibit any significant variation. This microcosm study indicates that higher temperatures or prolonged thawing periods affect the relative abundance of cold-adapted bacterial communities, thereby promoting the rate of microbial HS decomposition. The resulting increase in HS-derived small metabolites will possibly accelerate warming-induced changes in the Antarctic tundra ecosystem.  相似文献   

16.
Forty-nine species and one variety of benthic blue-green, red, brown and green algae were found over a 1.5 year period in a thermal sea water dump where temperatures average 10°C above ambient Long Island Sound waters. Of these, 58% can survive temperatures exceeding 30°C, but only six show survival after prolonged excessive temperature. At temperatures less than 27°C, the number of taxa is independent of temperature, but at greater temperatures there is a significant negative correlation of temperature to taxa count, reaching a minimum of 3 species. Rapid temperature drops cause concomitant drops in taxa counts, 14% of this variation being attributed to drastic temperature change which affects the algae.  相似文献   

17.
Three ferrous-oxidising, acidophilic bacterial isolates oxidised Fe when growing on yeast extract; one isolate but not the other two grew on ferrous sulphate as the only energy source. The isolates did not grow on either pyrite, sulphur or thiosulphate, but they grew on chalcopyrite and solubilize copper. They are mesophiles but can be adapted to grow at 38°C and 45°C. Their bioleaching activities at these temperatures were evaluated and compared.  相似文献   

18.
Cyanobacteria that grow above seawater salinity at temperatures above 45°C have rarely been studied. Cyanobacteria of this type of thermo-halophilic extremophile were isolated from siliceous crusts at 40–45°C in a geothermal seawater lagoon in southwest Iceland. Iceland Clone 2e, a Leptolyngbya morphotype, was selected for further study. This culture grew only at 45–50°C, in medium ranging from 28 to 94 g L−1 TDS, It showed 3 doublings 24 h−1 under continuous illumination. This rate at 54°C was somewhat reduced, and death occurred at 58°C. A comparison of the 16S rDNA sequence with all others in the NCBI database revealed 2 related Leptolyngbya isolates from a Greenland hot spring (13–16 g L−1 TDS). Three other similar sequences were from Leptolyngbya isolates from dry, endolithic habitats in Yellowstone National Park. All 6 formed a phylogenetic clade, suggesting common ancestry. These strains shared many similarities to Iceland Clone 2e with respect to temperature and salinity ranges and optima. Two endolithic Leptolyngbya isolates, grown previously at 23°C in freshwater medium, grew well at 50°C but only in saline medium. This study shows that limited genotypic similarity may reveal some salient phenotypic similarities, even when the related cyanobacteria are from vastly different and remote habitats.  相似文献   

19.
Laboratory, growth chamber and field experiments were conducted to select among 226 isolates of Rhizobium meliloti for the ability to grow, nodulate alfalfa (Medicago sativa L.) and support N2-dependent plant growth between 9° and 12°C. There was wide variation in the abilities of R. meliloti isolates to grow and form nodules at 10°C. Culture doubling times (td) varied from 1 to 155h, and the number of nodules formed on alfalfa in growth pouches in 2 weeks varied from 0 to 3.8 nodules per plant. Nodulation occurred at 9°C, but there was no significant N2-dependent plant growth at this temperature. However, several isolates of R. meliloti had the ability to nodulate alfalfa and produce N2-dependent growth at root temperatures between 10° and 12°C root temperature than did 14 other isolates tested. In field experiments, inoculation with strain NRG-34 resulted in greater nodule numbers, nodule weight, proportion of nodules occupied by the inoculant strain and plant weight than did inoculation with a commercial strain (NRG-185). These results permitted selection of a strain with better low-temperature competitive abilities than the currently available commercial strains.  相似文献   

20.
【背景】少根根霉物种内菌株间生理生化指标存在差异,相应的遗传背景不明,不利于少根根霉生产发酵的进一步应用。【目的】探究不同少根根霉菌株温度-生长动力学模型间的差异,为其群体遗传研究奠定基础,为生产菌株的筛选提供依据。【方法】选取来自欧亚各地的纯种少根根霉为实验材料,通过形态学鉴定,以及ITS和IGSrDNA分子系统发育重建进行分子鉴定,采用培养基平板培养直接测量法进行温度-生长动力学分析。【结果】少根根霉温度-生长动力学模型呈现丰富的多样性,与各形态和分子系统发育变种基本不具有相关性。菌株间温度-生长速度曲线具有显著性差异。少根根霉生长抑制低温范围、最适生长温度范围、生长抑制高温范围和致死高温范围分别为4-9、30-37、40-49和40-52°C。菌株XY00454和XY00469具有良好的高温适应性和较快的生长速度,有开发成为工业发酵菌的潜力。【结论】少根根霉物种仍然处于剧烈的演化之中,种内形态、分子和生理分化较为活跃,但尚未形成任何独立的种群。根据温度适应性的数据可以筛选出发酵生产潜力菌株。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号