首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural changes associated with the encystment of Schizopyrenus russelli have been studied by electron microscopy. Before encystment small “black bodies” appear in the cytoplasm and later migrate toward the periphery. The outer cyst wall is secreted at this stage as a thin discontinuous layer which thickens and subsequently becomes continuous. Concomitant with this, the endoplasmic reticulum surrounds the mitochondria. The inner cyst wall later appears as a multilayered structure which presumably is cast off from the plasma membrane. Between the inner and outer layers of the cyst wall, there is a middle, less electron-dense layer wherein extruded cytoplasmic material is found embedded at certain places.  相似文献   

2.
Light and electron microscopical studies on the effect of a culture filtrate of Erwina herbicola B 247 and herbicolin A on Fusarium culmorum The effect of a culture filtrate of Erwinia herbicola B 247 and the antibiotic herbicolin A, respectively, on the hyphae of Fusarium culmorum was studied in vitro using light and electron microscopy. The light microscopy revealed a swelling and disruption of the hyphae tips with a release of cytoplasm. Ultrastructural investigations demonstrated the appearance of electron-dense material of a round or tubular structure in the cell wall. On its inner side, an accumulation of electron-dense material formed a spongy structure associated with the altered plasma membrane. Finally, a complete dissolution of the cell wall was observed.  相似文献   

3.
Cyst formation in Ceratium hirundinella (O. F. Müll.) Bergh was studied by light and electron microscopy, using material from several lakes and reservoirs and also laboratory cultures. Cells preparing to encyst build up large quantities of starch and lipid and at the same time reduce their other cell components. The cyst is released from the theca as a naked cell bounded by a double membrane. The most commonly found cyst deposits a layer of electron-dense granules containing silicon on the outer membrane and lays down a cellulose-like material between the two membranes. Cysts without the electron-dense granules are commonly formed in cultures but rarely found in lakes. These cysts appear less resistant to decay and do not show the reorganization of cell contents for dormancy. It is suggested that C. hirundinella has both a resting cyst, forming part of the life cycle, and a temporary cyst stage.  相似文献   

4.
An apparently healthy Norwegian lemming (Lemmus lemmus) caught in northern Finland was observed to have a whitish body 0.5 to 1.0 mm in diameter in the external layer of the cerebral cortex. By light microscopy a highly lobulated cyst of Frenkelia sp. was observed. By transmission electron microscopy lemmus) collected in the cyst wall was seen consisting of a parasitophorous vacuolar membrane, an underlying electron-dense layer and a granular layer. The membrane was only slightly convoluted. The protrusions of the cyst wall appeared round but were often not distinctive. A very thin septum divided the interior of the cyst into compartments packed with bradyzoites and maturing zoites. The bradyzoites were elongate measuring 5-8 x 1.5-2 microm. This is the first electron microscopical study of Frenkelia sp. from L. lemmus.  相似文献   

5.
ABSTRACT. The settling tomite stage of the apostome Hyalophysa chattoni secretes a phoretic cyst wall composed of chitin, mucopolysaccharides, and protein. Within 1 1/2 h after settling, an electron-dense proteinaceous cyst layer (the outer layer) is formed from secretions originating at the base of the kineties and from the thick pellicular layer between the kineties. The inner cyst layer, composed primarily of chitin (acidic and neutral polysaccharides are also present), is secreted across the entire cell surface. Cyst wall formation is completed within 6 h. The fine structure of endocyst secretion resembles stages in the secretion of chitin by fungi, yeasts, and arthropods. A proteinaceous attachment peduncle is secreted to anchor the cell to a shrimp host and is formed by the release of electron-dense secretory bodies from the cell's ventral surface.  相似文献   

6.
The ultrastructure of developing basidiospores in Rhizopogon roseolus is described. When viewed in the fruiting body chamber using scanning electron microscopy, basidiospores appear narrowly ellipsoid and have smooth walls. Eight basidiospores are usually produced on the apex of each sterigma on the basidium. Transmission electron micrographs showed that basidiospores formed by movement of cytoplasm (including the nuclei) via the sterigmata, and then each basidiospore eventually became separated from its sterigma by an electron-lucent septum. The sterigma and basidium subsequently collapsed, resulting in spore release. Freshly released spores retained the sterigmal appendage connected to the collapsed basidium. After spore release, the major ultrastructural changes in the spore concerned the lipid bodies and the spore wall. During maturation, lipid bodies formed and then expanded. Before release, the spore wall was homogeneous and electronlucent, but after release the spore wall comprised two distinct layers with electron-dense depositions at the inner wall, and the dense depositions formed an electron-dense third layer. The mature spore wall complex comprised at least four distinct layers: the outer electron-lucent thin double layers, the mottled electron-dense third layer, and the electron-lucent fourth layer in which electron-lucent granular substances were dispersed.  相似文献   

7.
SYNOPSIS. Ultrastructure of cysts of Naegleria gruberi, Naegleria fowleri, and Naegleria jadini was compared by transmission electron microscopy. Pores in the cyst wall were observed in all 3 species. In N. gruberi they were surrounded by a collar and sealed with a relatively large mucoid plug; no such collar was seen around the pores in the other 2 species, in which the plug was smaller than that in N. gruberi. An electron-dense plaque serving as an additional pore closure was present in all 3 species. In N. gruberi, the cyst wall consisted of an inner thick and an outer thin layer; however, only the inner component was present in cysts of N. fowleri and N. jadini, which had a smooth appearance. At the ultrastructural level, excystment of N. fowleri involved digestion of the mucoid plug and emergence of the trophozoite through the pore. Some digestion of the cyst wall also appeared to take place during excystment.  相似文献   

8.
Encystment of the intestinal protozoan, Giardia, is a key step in the life cycle that enables this parasite to be transmitted from host to host via either fecal oral, waterborne, or foodborne transmission. The process of encystment was studied by localizing cyst wall specific antigens with immunofluorescence for light microscopy and immunogold staining for field emission scanning electron microscopy. Chronological sampling of Giardia cultures stimulated with endogenous bile permitted identification of an intracellular and extracellular phase in cyst wall formation, a process which required a total of 14-16 h. The intracellular phase lasted for 8-10 h, while the extracellular phase, involved the appearance of cyst wall antigen on the trophozoite membrane, and the assembly of the filamentous layer, a process requiring an additional 4-6 h for completion of mature cysts. The extracellular phase was initiated with the appearance of cyst wall antigen on small protrusions of the trophozoite membrane (-15 nm), which became enlarged with time to caplike structures ranging up to 100 nm in diameter. Caplike structures involved with filament growth were detected over the entire surface of the trophozoite including the adhesive disc and flagella. Encysting cells rounded up, lost attachment to the substratum, and became enclosed in a layer of filaments. Late stages in encystment included a “tailed” cyst in which flagella were not fully retracted into the cyst. Clusters of cysts were seen in which filaments at the surface of one cyst were connected with the surface of adjacent cysts or the “tailed” processes of adjacent cysts, suggesting that the growth of cyst wall filaments may be at the terminal end. In conclusion, the process of encystment has been shown to consist of two morphologically different stages (intracellular and extracellular) which requires 16 h for completion. Further investigation of the extracellular stage with regard to assembly of the filamentous layer of the cyst wall may lead to innovative methods for interfering with production of an intact functional cyst wall, and thereby, regulation of viable Giardia cyst release from the host.  相似文献   

9.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

10.
Bisalputra, T., and T. E. Weier. (U. California, Davis.) The cell wall of Scenedesmus quadricauda. Amer. Jour. Bot. 50(10): 1011–1019. Illus. 1963.—Fine structure of the cell wall of Scenedesmus quadricauda fixed in both KMnO4 and osmium tetroxide is described. The cell wall consists of 3 layers: the inner cellulosic layer which delimits individual cells; the outer pectic layer which binds the cells of the coenobium together; and a thin middle layer, bounded by membranes on either side, which is electron-dense in osmium-fixed material but of medium electron density in KMnO4. The structure of the outer pectic layer is similar in both fixatives; it consists of a hexagonal network of electron-dense material on the surface, and a system of tubules or “props” which radiate out from the middle layer of the wall to support the net. The pectic layer appears in the daughter coenobia before their liberation from the parent colony.  相似文献   

11.
The encystment of Laurenliella acuminata was divided into five stages: stage A (precystic semitransparent cell with dark-globules), stage B (precystic transparent cell), stage C (precystic pigmented cell), stage D (spherical shape without cyst wall) and stage E (young resting cyst), on the basis of observations of changes in morphology and pigmentation during encystment. The duration of these stages was also established. Observations by electron microscopy confirmed that the cyst wall, composed of four layers, is derived from different kinds of precursors which are synthesized “de novo.” The ectocyst precursors are composed of stacks of between 5 and 12 small thin plates or discs; these stacks are about 0.9 μm in length and 0.06 μm in height. The mesocyst precursors are fibrillar bodies of variable shapes, about 2.4 μm in maximum length and 0.12–0.16 μm in diameter. These precursors appear in the cytoplasm of the precystic cell during the first precystic stage (stage A). The endocyst precursors are rounded bodies surrounded by a fine membrane, and their contents appeared similar to the endocyst. The granular layer precursors are spherical bodies about 0.1–0.2 μm in diameter, surrounded by a double membrane presenting ribosomes adhering to its outer membrane. Both endocyst and granular layer precursors are observed in the precystic cytoplasm from stage B. On the basis of ultrastructural studies, a formation and growth model of the cyst wall of the hypotrichous ciliate Laurentiella acuminata is proposed.  相似文献   

12.
SYNOPSIS. A procedure is described for the isolation of cyst wall of Schizopyrenus russelli free of cytoplasmic material. It has 27.3% protein, 37.5% carbohydrate (of which 13.1% is cellulose), and 15.1% lipids. Sialic acid is absent. It has a relatively electrondense inner thick layer and a less electron-dense outer thin layer. The space between the 2 layers is 25 nm in younger cysts and 2.5 μ in fully mature cysts. This space is filled with a fibrillar spongy material likely to be cellulose.  相似文献   

13.
Summary Cross sections and cross tangential sections of 1 to 3-day-old cysts (gametangia) ofAcetabularia mediterranea were examined by electron microscopy. In a defined zone of the peripheral cytoplasm of the cysts, where the lid is to be formed, a characteristic circular band-like structure, the putative lid forming apparatus, can be identified. In 1 -day-old cysts this structure is characterized by two electron dense amorphous layers close and parallel to the plasma membrane. In 3-day-old cysts the lower layer consists of rod-like structures. The position of the circular band-like lid forming apparatus is correlated to the position of the cyst organizing secondary nucleus which occupies a non central position. Usually the center of the lid forming apparatus lies on the shortest line between the secondary nucleus and the cyst wall. This suggests that the cyst organizing secondary nucleus plays an important role in the formation of the cyst lid.  相似文献   

14.
Summary Cells of Pityrosporum ovale were prepared for electron microscopy by different methods of fixation and embedding, all of them causing some degree of damage to the cells. Apart from the usual organelles seen in other yeast cells, a body was found which showed an electron-dense outer layer and an electron-light centre when stained with permanganate. The cell wall showed layers of different electron-density. Buds were formed at one pole only, leaving a collar on the mother cell.  相似文献   

15.
The oocyst wall of Isospora lacazei from sparrows was studied with scanning (SEM) and transmission (TEM) electron microscopy. In TEM, the oocyst wall consisted of four distinct layers (L1-4). The innermost layer, L1, was moderately electron-lucent and 240--285 nm thick; L2 was electron-dense and 210--240 nm thick; L3 was moderately electron-lucent and 15--150 nm thick; L4, the outer most layer, was discontinuous and consisted of electron-dense discoid bodies which measured 180--220 nm x 320--840 nm. The discoid bodies of L4 as seen by TEM appeared spheroid in shape when observed by SEM. One or two membranes were situated on or between various layers of the oocyst wall. One such membrane occurred on the inner margin of L1, two closely applied membranes were interposed between L1 and L2, one membrane occurred between L2 and L3, and one membrane on the outer margin of L3.  相似文献   

16.
SYNOPSIS. The sporogonic stages of Leucocytozoon dubreuili in the midgut and salivary glands of the simuliid vectors was studied by electron microscopy. Young uninucleate oocysts have a pellicle that initially resembles that of the ookinetc. Numerous electron-dense bodies and microtubules in the peripheral cytoplasm may be involved in the formation of the cyst wall. The dense bodies appear to give rise to the amorphous material of the wall. The tubules which run circumferentially beneath the oocyst's boundary probably serve as a skeletal support for the cell surface during deposition of the wall material. A subcapsular “space” which provides area for expansion of the developing sporozoites is formed in early multinucleate oocysts. The subcapsular “space” appears to be formed through a condensation of the peripheral cytoplasm, resulting in an osmotic gradient across the oocyst's limiting membrane. Consequently water diffuses out, creating a fluid-filled space. Sporozoite formation begins with localized thickenings on the oocyst's limiting membrane. Subsequent extension of the thickened regions into the subcapsular “space” marks the onset of sporozoite budding. The process is highly synchronized, and culminates with the production of up to 150 sporozoites about the sporoblastoid body. The structure of sporozoites from mature oocysts and of the salivary glands of the vector is basically similar, although salivary gland sporozoites are more elongate and have numerous electron-dense micronemes. The paired rhoptries in the latter sporozoites are more elongate and uniformly electron-dense than in oocyst sporozoites.  相似文献   

17.
The zygomycete Geosiphon pyriforme is the only known endocyanosis of a fungus. The Nostoc spp. filaments are included in photosynthetically active and nitrogen fixing, multinucleated bladders, which grow on the soil surface. The spores of the fungus are white or slightly brownish. They are about 250 μm in diameter and develop singly on hyphal ends or, less frequently, intercalarly. The wall of the spores consists of a thin innermost layer, a laminated inner layer with a thickness of about 10–13 μm, and an evanescent outer layer. The laminated layer is composed of helicoidally arranged microfibrils, and is separated from the evanescent outer layer by a thin electron-dense sublayer. Polarisation microscopy indicates the occurrence of chitin. Shape and wall ultrastructure of the Geosiphon spores and their cytoplasm resemble that of Glomus spores, but are different from that of other genera of the Glomales and Endogonales. Germination occurs by a single thick hyphal outgrowth directly through the spore wall. Like various AM forming fungi, Geosiphon pyriforme contains endocytic bacteria-like organisms, which are not surrounded by a host membrane. Our observations indicate that Geosiphon is a potential AM fungus.  相似文献   

18.
The mstacercarial cyst of Cloacitrema narrabeenensis which is formed in the open is composed of four layers: an outermost layer of acid mucopolysaccharide, a layer of protein which is presumed to be tanned, a layer of neutral mucopolysaccharide and an innermost layer of keratinized protein. The two layers which together form the outer cyst wall can be split off by slight pressure from the two remaining layers which together form the inner cyst wall. In the centre of the ventral side of the inner cyst wall, the keratinized layer is incomplete and this ventral plug region is composed of neutral mucopolysaccharide. The cyst wall is therefore very similar to that of Fasciola hepatica, the main difference being that the order of the two layers of the outer cyst is reversed. General evolutionary and functional relationships of metacercarial cysts are discussed.  相似文献   

19.
Yeast Glucan in the Cyst Wall of Pneumocystis carinii   总被引:1,自引:0,他引:1  
Ultrastructurally, the cyst wall of Pneumocystis carinii consists of an electron-dense outer layer, an electron-lucent middle layer, and an innermost plasmalemma. This is similar in appearance to the cell wall of some yeasts, e.g. Saccharomyces cerevisiae , which consists of an outer dense layer of mannan, a middle lucent layer of β−1,3-glucan (yeast glucan) and an innermost plasmalemma. The cyst wall P. carinii , as well as the cell wall of S. cerevisiae , can be labeled by a variety of methods which stain polysaccharides, such as Gomori's methenamine silver (GMS) and by Aniline blue, a dye which selectively stains β-1,3-glucan. The treatment of P. carinii cysts with Zymolyase, which the key enzyme is β,3-gIucan laminari-pentaohydrolase, results in lysis of the outer 2 layers of the cyst wall and the loss of positive staining by both GMS and Aniline blue. The lysis of elements of the cyst wall of P. carinii is achieved under the same conditions and concentration at which Zymolyase lyses the outer 2 layers of the cell wall of viable cells of S. cerevisiae . These observations indicate that a major component of the cyst wall of P. carinii is β-1,3-glucan.  相似文献   

20.
SYNOPSIS. Electron microscope observations of the complex cyst wall of Didinium nasutum are reported. The cyst wall is composed of 3 major coats. The outermost coat, the ectocyst, consists of short strands of filamentous material which forms a diffuse, amorphous layer approximately 8–9 μ thick. Culture debris, bacteria and unidentified inclusions have been observed adhering to the outer coat. The mesocyst, approximately 2.5 μ thick, has 2 distinct regions. The outer region is differentiated into several slightly thicker layers which in face view have a honeycomb appearance. The deeper region of the mesocyst consists of compact lamellae lacking the obvious honeycomb appearance of the layers of the outer region. Finally, the endocyst (0.3 μ thick), which arises in the mature cyst in the space that develops between the pellicle and the mesocyst, consists of delicate fibrils in a compact matrix. Both mesocyst and endocyst may be undulant and folded. The structure, origin and possible relationships of the various coats composing the cyst wall are discussed. The present study also contributes information on the role and fate of mucocysts and other cytoplasmic structures during the formation of the cyst wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号