首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An enzyme has been discovered in Escherichia coli that catalyzes the conversion of the triphosphate ester of 2-amino-4-hydroxy-6-(d-erythro-1′,2′,3′-trihydroxypropyl)-7,8-dihydropteridine, (i.e. d-erythro-dihydroneopterin triphosphate) to an epimer of this compound, l-threo-dihydroneopterin triphophate. The enzyme, which is here named “d-erythro-dihydroneopterin triphosphate 2′-epimerase,” needs a divalent cation (Mg2+ or Mn2+ is most effective) for maximal activity. Its molecular weight is estimated at 87 000–89 000. Little or no activity can be detected if either the monophosphate or the phosphate-free form of the substrate is incubated with the enzyme. Evidence is presented to establish that all three phosphate residues of the substrate are retained in the product and that the product is of the l-threo configuration.  相似文献   

2.
The concomitant production of formic acid and pterin compounds from guanosine-5′-triphosphate (GTP) has been found in cell-free extracts of Serratia indica. Among the pterin compounds, l-threo-neopterin–the major Crithidia factor in S. indica–, a cyclic phosphate of neopterin (cNP), d-erythro-neopterin and 6-hydroxymethyl pterin were detected and isolated. Formate-14C elimination from GTP-8-14C was quantitatively distributed in the ethyl acetate layer in the ehyl acetate-hydrochloric acid partition system. Carbon 8 of GTP was released as formic acid. Enzymatic production of formate and cNP was linear for 2 hr at 37°C. Formate production was proportional to the enzyme concentration. The optimum pH for formate elimination was observed around pH 8.6. Optimum temperature for the production of formate and cNP was 50°C. The apparent Km value of GTP for formate production was 6.2×10?bm. Formate eliminating activity was activated by disodium phosphate but was inhibited by Mg2+ or AMP. Incorporation of GTP-U-14C into pterin compounds was also regulated with disodium phosphate. Effective incorporation into cNP and d-erythro-neopterin occurred in the presence of phosphate. When phosphate was omitted from the system, however, effective incorporation into 6-hydroxymethyl pterin was observed. The biosynthetic process of the Crithidia factors, i.e. l-threo-neopterin and cNP, from GTP in S. indica is also discussed.  相似文献   

3.
A cell-free system for the biosynthesis of l-threo-neopterin, a growth factor for protozoan, Crithidia fasciculata from guanosine-5′-triphosphate (GTP) was obtained from extracts of Serratia indica IFO 3759. This preparation catalyzed the production of a specific pteridine from GTP, which was isolated and characterized as a cyclic phosphate of neopterin (cNP). Among the other products, l-threo-neopterin, as the Crithidia factor, 6-hydroxymethylpterin, and erythro-neopterin were tentatively identified. Requirements for the synthesis of these products include GTP, Mg2+, and disodium phosphate. Fluorescence formation was inhibited by purine nucleotides.

When a disodium phosphate was included in the reaction system, cNP and erythro-neopterin were effectively synthesized from GTP. On the other hand, when the phosphate was omitted 6-hydroxymethylpterin was formed.

The possible biosynthetic process of l-threo-neopterin was discussed.  相似文献   

4.
Abstract

A series of 5′-N-methanesulfonyl derivatives of 3′-azido-5′-(alkylamino)-3′,5′-dideoxythymidine was synthesised. The first step of the synthesis involved the reaction of 1-(2,5-dideoxy-5-O-tosyl-β-D-threo-pentofuranosyl)thymine 1 with an appropriate amine to give 1-[5-(alkylamino)-2,5-dideoxy-β-D-threo-pentofuranosyl]thymines 2a-e and 1-(2,5-dideoxy-β-threo-pent-4-enofuranosyl)thymine 3 as a by-product. Compounds 2a-e were treated with an excess of methanesulfonyl chloride to yield intermediates 1-[5-(dimethylamino)-3-O-methanesulfonyl-2,3,5-trideoxy-β-D-threo-pentofuranosyl]-thymine 4a and 1-[5-(N-alkyl-N-methanesulfonyl)-3-O-methanesulfonyl-2,3,5-trideoxy-β-D-threo-penfuranosyl]thymines 4b-e. The reaction of 4a-e with lithium azide in dimethyl-formamide afforded the final compounds 1-[3-azido-5-(N-methyl-N-methanesulfonyl)-2,3,5-trideoxy-β-D-erythro-penofuranosyl]thymine 5a and 1-[3-azido-5-(N-alkyl-N-methanesulfonyl)-2,3,5-trideoxy-β-D-erythro-penofuranosyl]thymines 5b-e. The independent synthesis of 4′,5′-unsaturated product 3 was also described.  相似文献   

5.
A new naturally occurring pteridine has been isolated from Photobacterium phosphoreum. This compound is shown by degradative experiments and by comparison with authentic material to be D-erythro-neopterin 2′:3′-cyclic phosphate. The possible biochemical significance of the compound is discussed.  相似文献   

6.
An enzyme has been discovered in Escherichia coli that catalyzes the conversion of the triphosphate ester of 2-amino-4-hydroxy-6-(d-erythro-1′,2′,3′-trihydroxypropyl)-7,8-dihydropteridine, (i.e. d-erythro-dihydroneopterin triphosphate) to an epimer of this compound, l-threo-dihydroneopterin triphophate. The enzyme, which is here named “d-erythro-dihydroneopterin triphosphate 2′-epimerase,” needs a divalent cation (Mg2+ or Mn2+ is most effective) for maximal activity. Its molecular weight is estimated at 87 000–89 000. Little or no activity can be detected if either the monophosphate or the phosphate-free form of the substrate is incubated with the enzyme. Evidence is presented to establish that all three phosphate residues of the substrate are retained in the product and that the product is of the l-threo configuration.  相似文献   

7.
Specific antibodies against l-erythro-biopterin have been prepared in rabbits using the conjugates to bovine serum albumin. The antiserum against l-erythro-biopterin distinguished among l-erythro-tetrahydro- or 7,8-dihydro-biopterin, the other three stereoisomers of biopterin, d-erythro-neopterin, folic acid, and other synthetic pteridines. Using the specific antiserum against l-erythro-biopterin, a radioimmunoassay has been developed to measure the biopterin concentrations in urine, serum, cerebrospinal fluid, and tissues. The conjugate of l-erythro-biopterin with tyramine, 4-hydroxy-2-[2-(4-hydroxyphenyl)ethylamino]-6-(l-erythro-1,2-dihydroxypropyl)pteridine (BP-TYRA), was synthesized and labeled with 125I as the labeled ligand for the radioimmunoassay. BP-125I-TYRA had similar binding affinity as the natural l-erythro-biopterin and was thus permitted to establish a highly sensitive radioimmunoassay for biopterin. The limit of sensitivity of the radioimmunoassay with BP-125I-TYRA as labeled ligand was 0.5 pmol. The total concentration of biopterins, i.e., biopterin, 7,8-dihydro-, quinonoid dihydro and tetrahydrobiopterins, in the biological samples was obtained by iodine oxidation under acidic conditions prior to the radioimmunoassay, whereas iodine oxidation under alkaline conditions gave the concentration only of the former two. Biopterin in urine could be measured directly using 1 μl of urine, but a pretreatment with a small Dowex 50-H+ column was required for serum, cerebrospinal fluid, and brain tissues.  相似文献   

8.
Summary The development of increased activities of ribulosediphosphate carboxylase (EC 4.1.1.39) and of phosphoribulokinase (EC 2.7.1.19) in greening bean leaves was completely inhibited by D-threo chloramphenicol but unaffected by L-threo chloramphenicol. This indicates that these enzymes are synthesized by the ribosomes of the developing plastids. A different mechanism appears to be responsible for the development of activity of NADP-dependent triosephosphate dehydrogenase (EC 1.2.1.13) where the D-threo isomer gave 45% inhibition and the L-threo isomer gave 18% inhibition. Thus both specific (D-threo isomer) and unspecific (both isomers) inhibition occurred. It is suggested that the development of NADP-dependent triosephosphate dehydrogenase activity may result from the allosteric activation, in the plastids, of the NAD-dependent enzyme (Müller et al., 1969) which has been synthesized by cytoplasmic ribosomes. Neither isomer inhibited the development of five other enzymes of the photosynthetic carbon cycle namely ribosephosphate isomerase (EC 5.3.1.6), phosphoglycerate kinase (EC 2.7.2.3), triosephosphate isomerase (EC 5.3.1.1), tructosediphosphate aldolase (EC 4.1.2.13) and transketolase (EC 2.2.1.1), but there was a significant stimulation of the activity of transketolase by D-threo chloramphenicol.  相似文献   

9.
L-threo-2,3-Hexodiulosono-1,4-lactone 2-phenylhydrazone(1) reacted with hydroxylamine to give the 3-oxime 2-phenylhydrazone(2). On boiling with acetic anhydride,2 was dehydrated to 4-[L-threo-2,3-diacetoxy-(1-hydroxypropyl)]-2-phenyl-1,2,3-triazole-5-car?ylic acid lactone(3), which was converted into 2-phenyl-4-(L-threo-1,2,3-trihydroxypropyl)-1,2,3-triazole-5-car?amide(4) with liquid ammonia. The structure of compound4 was confirmed by acetylation to 2-phenyl-4-(L-threo-1,2,3-triacetoxypropyl)-1,2,3-triazole-5-car?amide(5), and by periodate oxidation followed by reduction, to give 4-(hydroxymethyl)-2-phenyl-1,2,3-triazole-5-car?amide(6). Treatment of compound1 with aryl- or aroyl-hydrazines afforded mixed bishydrazones(7–14), which were acetylated to15–21, and treated with hydrazine to give pyrazolinediones22 and23  相似文献   

10.
Abstract

Bromination of the title compound 1 with bromine in phosphate buffer has led to 8-bromo-N6, N6-dimethyl-2′,3′-0-isopropylidene-adenosine (2) and 2′,3′-0-isopropylidene-N6-methyladenosine (3). Under similar conditions, compound 2 gave 8-bromo-2′,3′-0-isopropylidene-N6-methyladenosine (4). The transformations 1 → 3 and 2 → 4 represent biomimetic models of in vivo N6-demethylation of antibiotic puromycin.  相似文献   

11.
Fusion of 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol with theophylline, in the presence of boron trifluoride etherate as the catalyst, caused condensation to occur. This reaction afforded a variety of products of nucleosidic character, which were successively separated by repeated chromatography on silica gel. The structures of the products were determined, on the basis of X-ray crystallographic analysis (for three compounds) and by means of n.m.r.-spectral data and mass spectrometry, as the following: 7-(2-acetamido-4,6-di-O-acetyl-2,3-dideoxy-β-d-erythro-hex-2-enopyranosyl)theophylline, the corresponding α- and β-d-threo derivatives, and 7-(2-acetamido-6-O-acetyl-2,3-dideoxy-α-d-threo-hex-2-enopyranosyl)theophylline and its β anomer.In addition to these 2′,3′-unsaturated nucleosides having the base linked at C-1′, three products of a new type, having the base attached at C-4′, were also isolated: 7-(methyl 2-acetamido-6-O-acetyl-2,3,4-trideoxy-β-d-erythro-hex-2-enopyranosid-4-yl)theophylline, and the corresponding α-d-threo and α-d-erythro isomers.The correlation of the data obtained by X-ray structure analysis and proton nuclear magnetic spectroscopy, together with their application for the determination of configuration and conformation of these compounds, are discussed. It appears that the 1H-n.m.r. data alone do not suffice for unambiguous and correct structure determination for these classes of compounds.  相似文献   

12.
《Phytochemistry》1987,26(4):1147-1152
Six phenolic glucoside gallates: D-threo-guaiacylglycerol 8-O-, L-threo-guaiacylglycerol 8-O-, 3-methoxy-4-hydroxyphenol 1-O-, gentisic acid 5-O-, 3,5- dimethoxy-4-hydroxyphenol 1-O- and cis-coniferyl alcohol 4-O-β-D-(6′-O-galloyl)glucopyranosides were isolated from Quercus mongolica and Q. acutissima.  相似文献   

13.
GTP cyclohydrolase which catalyzes the formation of formic acid and a pterin compound from guanosine-5′-triphosphate (GTP) has been partially purified from extracts of Serratia indica IFO 3759. 14C-Formic acid eliminated from (8-14C)GTP is oxidized with mercury acetate to 14CO2, which is trapped by β-phenylethylamine. The molecular weight of the enzyme is approximately 170,000 and the enzyme is relatively heat-stable. The enzyme activity is strongly inhibited by GDP and ATP, but not by other nucleotides. Inhibition by GDP is competitive with GTP. Metals, such as Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Al3+, Hg2+ and p-chloromercuribenzoate strongly inhibit the enzyme activity. The activity is also inhibited by . The pterin product has been characterized as a derivative of neopterin triphosphate by enzymatic degradations, ultraviolet spectra, fluorescence and excitation spectra, thin-layer chromatography and thin-layer electrophoresis. The product is estimated to differ from d-erythro-neopterin triphosphate prepared from the enzyme system of Escherichia coli B, since (1) only one mole of phosphate can be liberated by alkaline phosphatase and two moles of phosphates by phosphodiesterase and alkaline phosphatase from the product, and (2) the retention time of the product on high-performance liquid chromatography is different from that of d-erythro-neopterin triphosphate.  相似文献   

14.
Robert H. White 《Chirality》1996,8(4):332-340
The configuration at the C-9 of methanopterin (MPT) has been determined by comparing the circular dichroism (CD) spectra of MPT and its hydrolytic fragment, 1-[4-[[1-(2-amino-7-methyl-4-hydroxy-6-pteridinyl)-ethyl]amino]phenyl]-1-deoxy-D -ribitol (HP-1), with the CD spectra of a series of model compounds of known stereochemistry. These compounds included (S)-6-[1-(4-carboxymethylanilino)ethyl]pterin, (S-6(1-hydroxyethyl)-7-methylpterin, (S-6-(1-hydroxyethyl)pterin, (R)-6-(1-phenoxyethyl)pterin, D (+)-neopterin, and L -biopterin. From this comparison it was concluded that MPT has the R configuration at C-9 and is thus configurationally related to D (+)-neopterin, which has the S configuration at C-1. From previous work establishing the relative stereochemistry at C-6, C-7, and C-9 of N5-N10-methenyl-5,6,7,8-tetrahydromethanopterin (N5-N10-methenyl-H4MPT) as R, S, and R, respectively, it is clear that the remaining asymmetric carbons at C-6 and C-7 of H4MPT have the S and S configuration, respectively. Comparison of these latter two positions to the equivalent carbons in 5,6,7,8-tetrahydrofolate (H4folate) show that the steps involved in the biological reduction of MPT to H4MPT occur with the same stereochemical outcome as those involved in the biological reduction of folate to H4folate. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Abstract

3′-Deoxy-β-L-erythro- (3), 3′-deoxy-β-L-thero- (6), 2′-fluoro- (7) and 2′-azido-2′,3′-dideoxy-β-L-erythro- (10) pentofuranonucleoside derivatives of thymine have been synthesized and their antiviral properties examined. All these derivatives were stereospecifically prepared by glycosylation of thymine with a suitable peracylated 3-deoxy-L-erythro-pentofuranose sugar (1), followed by appropriate chemical modifications. The prepared compounds were tested for their activity against HIV, but they did not show an antiviral effect.  相似文献   

16.
Abstract

A synthesis of the C-nucleoside, 2-amino-7-(2-deoxy-β-D-erythro-pentofuranosyl)-3H,5H-pyrrolo[3,2-d]pyrimidin-4-one (9-deaza-2′-deoxyguanosine) was achieved starting from 2-amino-6-metnyl-3H-pyrimidin-4-one (5) and methyl 2-deoxy-3,5-di-O-(p-nitrobenzoyl)- D-erythro-pento-furanoside (11). The anomeric configuration of the C-nucleoside was established by 1H NMR, NOEDS and ROESY. This C-nucleoside did not inhibit the growth of T-cell lymphoma cells.  相似文献   

17.
Optically active lumazines (biolumazine, dictyolumazine, monalumazine, and neolumazine) are prepared from the corresponding pterins by enzymatic reaction, using pterin deaminase excreted by Dictyostelium discoideum. The fluorescence properties, circular dichroism spectra, and chromatographic behavior of these lumazines are studied. D - and L -enantiomers of biolumazine, dictyolumazine, and monalumazine are separated using a chiral flavoprotein column. This column also separates the enantiomeric pterins of the threo form: monapterin and dictyopterin. However, the column does not separate the enantiomeric pterins of the erythro form: neopterin and biopterin. By coupling a reverse-phase column to the flavoprotein column, the separation of pterins and lumazines in function of their hydrophobicity, as well as the separation of the diastereomers, is achieved. This coupled achiral/chiral high-performance liquid chromatography method enables determination of the stereoconfiguration of natural lumazines by comparison with optically pure compounds. A lumazine derivative, present in the extracellular medium of Dictyostelium discoideum, is identified as D -dictyolumazine, i.e., 6-(D -threo-1,2-dihydroxypropyl)-lumazine. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Monotosylation of 4-deoxy-3-O-methyl-dl-threo- and -erythro-pentopyranose led, in 62–68% yield, to the 2-O-tosyl derivatives which, on treatment at room temperature with sodium hydride in anhydrous ether, gave quantitatively 1,2-anhydro-4-deoxy-3-O-methyl-dl-threo- and -erythro-pentopyranose, respectively. These epoxides reacted with 2,4-dimethoxypyrimidine in the presence of pyridinium hydrochloride to give, in 68–78% yield, 1-(4-deoxy-3-O-methyl-β-dl-erythro- and -α,β-dl-threo-pentopyranosyl)-4-methoxy-2-pyrimidinone, respectively. Isomers having a trans-1′,2′ configuration were preponderantly formed by an Sn2 reaction.  相似文献   

19.
Methods are described for the synthesis of [3H]chloramphenicol and derivatives labeled on carbon 1 of the propanediol side chain, with a specific activity of about 2 mCi/μmol. The labeling step involves the reduction of the I-oxo derivative of N-acetyl chloramphenicol base by KB3H4 to produce a mixture of the d (?) threo- and d (?) erythro-diastereoisomers, since carbon 1 is an asymmetric carbon atom. The two isomers were separated by thin-layer chromatography after acetylation of the two free hydroxyls. After hydrolysis of the three acetyl groups, the biologically active d (?) threo-[1 ? 3H]chloramphenicol base was converted to chloramphenicol. Modification of the above procedures allows the rapid and simple preparation of the mixed d (?) threo- and d (?) erythro-isomers of [1 ? 3H]chloramphenicol. This mixture can be used where the presence of the inactive d (?) erythro-isomer of chloramphenicol is not important. The modified procedure also allows the preparation of the mixed isomers of [1 ? 3H]chloramphenicol base and of chloramphenicol analogs. Attempts to prepare a 3-aldehyde derivative of chloramphenicol were not successful. If this could be done, reduction of this derivative with KB3H4 would produce the correct isomer of chloramphenicol since carbon atom 3 on the propanediol side chain is not an asymmetric carbon atom.  相似文献   

20.
A stereoselective synthesis of erythro-serricornin [(4RS,6R,7S)-4,6-dimethyl-7-hydroxynonan-3-one] was completed starting from l-(+)-tartaric acid. The relative configuration of C(6)-methyl and C(7)-hydroxyl groups in naturally occurring serricornin was threo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号