首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Biomass, akinete numbers, net photosynthesis, and respiration of Pithophora oedogonia were monitored over two growing seasons in shallow Surrey Lake, Indiana. Low rates of photosynthesis occurred from late fall to early spring and increased to maximum levels in late spring to summer (29–39 mgO2·g?1 dry wt·h?1). Areal biomass increased following the rise in photosynthesis and peaked in autumn (163–206g dry wt·m?2). Photosynthetic rates were directly correlated with temperature, nitrogen, and phosphorus over the entire annual cycle and during the growing season. Differences in photosynthetic activity and biomass between the two growing seasons (1980 and 1981) were apparently related to higher, early spring temperatures and higher levels of NO3-N and PO4-P in 1981. Laboratory investigations of temperature and light effects on Pithophora photosynthesis and respiration indicated that these processes were severely inhibited below 15°C. The highest Pmax value occurred at 35°C (0.602 μmol O2·mg?1 chl a·min?1). Rates of dark respiration did not increase above 25°C thus contributing to a favorable balance of photosynthetic production to respiratory utilization at high temperatures. Light was most efficiently utilized at 15°C as indicated by minimum values of Ik(47 μE·m?2·s?1) and Ic (6 μE·m?2·s?1). Comparison of P. oedogonia and Cladophora glomerata indicated that the former was more tolerant of temperatures above 30°C. Pithophora's tolerance of high temperature and efficient use of low light intensity appear to be adaptive to conditions found within the dense, floating algal mats and the shallow littoral areas inhabited by this filamentous alga.  相似文献   

2.
Abundance of Pithophora oedogonia akinetes displayed seasonal changes, being greatest in winter and lowest in summer. Akinete abundance showed significant (P < 0.001) negative correlations with photoperiod(r = -0.53) and water temperature (r= -0.75) during the period February 1978 through June 1979. Experiments in which akinete germination was studied in response to manipulations of nutrients (NO3-N and PO4-P), photoperiod and temperature indicated that temperature was the primary factor regulating the timing of the vernal flush of akinete germination observed in Surrey Lake.  相似文献   

3.
An investigation was untertaken to evaluate the nutrient status of the River Rhine (two stations) and eight of its tributaries (total of ten samplings). Determinations of the following inorganic substances were made: PO4 ?3-P; NO3 ?-N; NO2 ?-N; NH4 + -N and Cl?. In addition, pH and carbonate alkalinity were measured. Bioassays to obtain the algal growth potential (AGP) were carried out using periphyton from the River Rhine. A linear relationship could be established between NO3 ?-N and the AGP, while the AGP showed a non-linear dependence on the PO4 3?-P concentration. The critical N/P ratio for N or P limitation of the algal growth in bioassays was evaluated graphically and by calculation. The results of the two methods are in good agreement: N is the limiting factor at NO3 ?N/PO4 3?-P ratios less than 10, while P is limiting at ratios greater than 20. At values between 10 and 20 neither N nor P can be supposed with certainty to be limiting.  相似文献   

4.
A survey of the spatial distribution of benthic macroalgae in a fluvial lake of the St. Lawrence River (Lake Saint‐Pierre, Quebec, Canada) revealed a shift in composition from chlorophytes to cyanobacteria along the flow path of nutrient‐rich waters originating from tributaries draining farmlands. The link between this shift and changes in water quality characteristics was investigated by sampling at 10 sites along a 15 km transect. Conductivity, current, light extinction, total phosphorus (TP; >25 μg P · L?1), and ammonium (8–21 μg N · L?1) remained fairly constant along the transect in contrast to nitrate concentrations, which fell sharply. Filamentous and colonial chlorophytes [Cladophora sp. and Hydrodictyon reticulatum (L.) Bory] dominated in the first 5 km where nitrate concentrations were >240 μg N · L?1. A mixed assemblage of chlorophytes and cyanobacteria characterized a 1 km transition zone where nitrate decreased to 40–80 μg N · L?1. In the last section of the transect, nitrate concentrations dropped below 10 μg N · L?1, and cyanobacteria (benthic filamentous mats of Lyngbya wollei Farl. ex Gomont and epiphytic colonies of Gloeotrichia) dominated the benthic community. The predominance of nitrogen‐fixing, potentially toxic cyanobacteria likely resulted from excessive nutrient loads and may affect nutrient and trophic dynamics in the river.  相似文献   

5.
The objective of this study was to assess the impacts of land use changes and irrigation water resource on the nitrate contamination in shallow groundwater. 394 water samples were sampled from the same irrigation wells during a period of five years (from 2002 to 2007) in Huantai County in the North China Plain. NO3-N concentration in irrigation wells was measured. Geostatistical method combined with GIS technique was used to analyze the spatio-temporal distribution of groundwater NO3-N concentrations in Huantai County. Land use type and irrigation water resource were combined with the variation of NO3-N concentrations by statistical approach to investigate the relationship between them. The distribution map showed that the percentages of area increased by 13.06%, 14.37%, 12.23% and 3.85% for that had nitrate concentrations of 10–15, 15–20, 20–30 mg L?1 and greater than 30 mg L?1 for shallow groundwater, respectively, while decreased by 28.87% and 14.63% for 0–5 and 5–10 mg L?1. In the well-irrigated field, the NO3-N concentrations in shallow groundwater had increased for vegetables, wheat–vegetables and wheat–maize rotations. In contrast, fast-growing tree system could act as a buffer to retain shallow groundwater nitrate content which resulted in reduced NO3-N concentrations. Under the same land use condition, irrigation with sewage, or well and sewage by turns would both enormously add nitrate to groundwater.  相似文献   

6.
A novel bacterium, strain SZ28, identified as Acinetobacter sp., showed anaerobic denitrification ability using Mn(II) as the electron donor. Nitrate-nitrogen concentration decreased from nearly 16.52–mg L?1 to 4.4–mg L?1, without accumulation of nitrite as an intermediate, with a maximum of 0.063–mg NO3?-N L?1 h?1, reaching a peak of 0.085–mg NO3?-N L?1 h?1 in sodium acetate. The nitrate removal rate reached 0.067–mg NO3?-N L?1 h?1, 0.059–mg NO3?-N L?1 h?1, and 0.078 mg NO3?-N L?1 h?1 using Mn(II), S(II), and Fe(II) as electron donors, respectively. The optimum pH was 6.0, with a removal rate of 0.063–mg NO3?-N L?1 h?1  相似文献   

7.
九龙江河口区养虾塘沉积物-水界面营养盐交换通量特征   总被引:5,自引:1,他引:5  
杨平  金宝石  谭立山  仝川 《生态学报》2017,37(1):192-203
通过对九龙江河口区陆基养虾塘水样和沉积物样品采集分析及结合室内模拟实验,探讨了虾塘在不同养殖阶段沉积物-水界面营养盐通量时间变化特征及其主要影响因素。虾塘沉积物向上覆水体释放NO_x~--N(NO_2~--N和NO_3~--N)、NH_4~+-N和PO_4~(3-)-P能力均呈现随养殖时间推移而降低的特征。沉积物在养殖中期和后期分别呈现对上覆水体NO_x~--N和PO_4~(3-)-P的吸收现象,但总体表现为释放(平均通量分别为(1.87±1.15)、(1.58±0.52)mg m~(-2)h~(-1)和(1.22±0.62)mg m~(-2)h~(-1))。沉积物-水界面溶解无机氮交换以NH_4~+-N为主(沉积物平均释放通量为(46.18±13.82)mg m~(-2)h~(-1))。沉积物间隙水与上覆水间的营养盐浓度差(梯度)及温度对上述交换通量的时间动态特征具有重要调控作用。研究结果表明养殖初期或中期沉积物较高的无机氮(尤其是NO_2~--N和NH_4~+-N)释放是养殖塘水质恶化的一个极具潜力的污染内源,可能会对虾的健康生长产生负面效应,控制沉积物无机氮释放是养虾塘养殖初期和中期重要的日常管理活动之一。  相似文献   

8.
Optimum nutrient conditions for growth and photosynthesis of Peridinium gatunense (Nygaard) (Peridinium cinctum fa. westii) were investigated using axenic clones in batch cultures. Selenium (Se) had previously been found to be an indispensable growth factor for P. gatunense. Optimal, suboptimal, and supraoptimal concentrations of HCO3?, N, Ca, Cl, Mg, P, K, S, Si, EDTA-Na, Fe, Mo, Zn, Mn, Co, Se, B, Br, I, and various trace element mixtures were determined by measuring biomass development, growth rates, 14C uptake, and/or oxygen production at various concentration gradients of these elements. The general characteristics of the best formulation, medium-L 16, relative to other media, are its high content of NaHCO3 (1 meq · L?1) and Mo (0.2 μM) but low concentrations of NO3-N (150 μM), PO4-P (10 μM), and Fe (0.4 μM), in addition to its content of Se. The total content of trace metals, except for Se, may be reduced to one-fourth of that in medium-L 16 without altering the major growth-promoting properties of the medium. Medium-L 16 deviated considerably from Lake Kinneret (Israel) water, being much lower in macroelements except for N and P. The pH (8.1–8.4) was in the same range, but the values of conductivity (140 μS · cm?1), alkalinity (1 meq · L?1) and NaCl (200 μM) were > 8, 2, and 30 times higher, respectively, in the lake water. Selenium deficiency may limit the growth of P. gatunense in this lake.  相似文献   

9.
The Wei River is the largest tributary of the Yellow River in China. To understand the sources and cycling of nitrate in the Wei River, we determined the concentrations and nitrogen and oxygen isotopic values of nitrate from water samples. Our results revealed that NO3?-N dominated the inorganic N and ranged from 0.1 to 8.8 mg/L (averaging 3.3 mg/L). Although this NO3?-N concentration does not exceed the World Health Organization's drinking water standard of 10 mg/L, the NO3?-N content of most water samples exceeded 3 mg/L, indicating poor water quality. The NO3?-N concentrations and δ15N-NO3? values demonstrate that there are significant differences in the spatial distribution of nitrogen between the tributaries and the main stream of the Wei River. In addition, a negative linear relationship (r2 = 0.63) between NO3?-N concentrations and δ18O-NO3? values suggests mixing between two distinct sources (fertilizer and manure or sewage). Furthermore, we infer that the main source of nitrate is not manure or sewage itself, but rather the nitrification of NH4+ in manure and sewage. Finally, no obvious denitrification processes were observed. These results expand our understanding of sewage as a major source of nitrate to the Wei River, emphasizing the role of nitrification.  相似文献   

10.
Hole-In-The-Donut (HID) is one of the most important restoration sites in the unique ecosystem of the Florida Everglades. The undertaking restoration project in HID is to reestablish native vegetation that is only supported by the original nutrient-poor soils and involves excavation and the permanent disposal of the exotic plants and the rock-plowed substrates. Currently, the excavated substrates are being stockpiled in HID areas. Nutrient leaching, particularly nitrogen (N) and phosphorus (P), from the soil disposal mounds and its potential subsequent transport to surrounding wetlands are among environmental concerns because the rock-plowed substrates had been farmed intensively and fertilized for more than 30 years. The primary goal of this study was to assess the leaching potentials of N and P in the soil disposal mounds and provide a guideline for the development of management strategies. Results derived from the column leaching study showed that the average peak concentrations were 9.8 and 13.9 mg L?1 for NO3-N and NH4-N, respectively, and 26.2 and 100.7 μg L?1 for PO4-P and total P, respectively. Potential leaching rates per year ranged from 1.3% to 4.4% for NO3-N, 6.2% to 11.2% for NH4-N, 4.5% to 7.3% for inorganic N, and 0.005 to 0.006% for total P. Although the heterogeneous nature of the substrates in the soil disposal mounds resulted in high variation among the sampling sites studied, the results demonstrated that the storage of the abandoned agricultural soil mixed with shredded Brazilian pepper in mounds appears to be a viable method of disposal.  相似文献   

11.
The seasonal abundance of epilithic algae was correlated with major physico-chemical parameters in a first-order, heavily shaded stream in northern Arizona. Diatoms made up over 85%, by numerical abundance, of the epilithon community Light energy, water temperature, and stream discharge were most highly correlated with seasonal abundance of epilithic diatom taxa when analyzed with stepwise multiple regression. None of the chemical variables measured in the study (NO3-N, O-PO4, SiO2, including PH) was found to be significantly correlated with the seasonal community structure of epilithic diatoms. Total diatom cell densities showed a significant negative correlation to stream bed light energy. Likewise, total diatom cell densities along a transect in the stream bed showed a negative correlation to current velocity during those months when base flow was low and stable, and current velocity was ≤25 cm·sec-1. Most diatom taxa had highest cell densities at temperatures < 16°C and at daily mean stream bed light levels < 400 μE·m?2·s?1. Highest cell densities of green algae occurred at temperatures between 6–16°C and at daily mean stream bed light levels of > 400 μE·m?2·s?1. Blue-green algae (cyanobacteria) grew best at the highest recorded water temperatures and daily mean stream bed light energy (16–20°C and 900–1200 μE·m?2·s?1). Abrupt increases in NO3-N coincided with a brief pulse of Nostoc pruniforme colonies during June, and leaf drop from Alnus oblongifolia during October.  相似文献   

12.
The present work was aimed at analysing the role of inoculated microalgae in nutrient dynamics, bioremediation and biomass production of sewage water. Preliminary microscopic analyses of sewage water revealed the presence of different algal groups, with predominance of Cyanophyta. Among the inoculated strains, Calothrix showed highest dry cell weight (916.67 mg L?1), chlorophyll and carotenoid content in tap water + sewage water (1:1) treatment. Significant removal of NO3-N ranging from 57–78% and PO4-P (44–91%) was recorded in microalgae inoculated tap water + sewage water. The total dissolved solids and electrical conductivity of tap water + sewage water after incubation with Calothrix sp. decreased by 28.5 and 28.0%, accompanied by an increase in dissolved oxygen from 4.4 to 6.4 mg L?1 on the 20th day. Our investigation revealed the robustness of Calothrix sp. in sequestering nutrients (N and P), improving water quality and proliferating in sewage water.  相似文献   

13.
The study of phosphorus and nitrogen fluxes in enriched isolation columns   总被引:1,自引:1,他引:0  
Isolation columns positioned in approximately 3.5 m of water in Midmar Dam, were enriched with PO4-P and NO3-N, singly and in combination. Increased chlorophyll concentration resulted from all enrichment treatments. Responses showed marked seasonality and varied in intensity and duration. Despite the PO4-P fixing potential of the sediments, SRP concentrations increased markedly at times and possible reasons for this discussed. The marked response to addition of NO3-N alone suggested a flux of phosphorus from the sediment through the water to the algal component. The significance of periphyton within the columns is discussed.  相似文献   

14.
Red algae sometimes turn yellow, but few studies have been conducted on the yellowing of subtidal bed-forming species and on the relationship between the color and environmental factors. We examined the seasonal changes in thallus color of macroscopic subtidal red algae and nutrient levels as in shallow waters at two sites: Hirasawa (0 to 3 m in depth) and Okinoshima Island (0 to 6 m in depth), central Pacific coast of Japan from April 2011 to March 2012. Yellowed red algae were found at all depths of the two sites. At Hirasawa, the ratio of yellowed species among the red algae (yellowing ratio, YR) calculated with data on a total of 23 species (3 to 14 species month?1) was high in months in which nitrate nitrogen (NO3-N) was low (1.73 to 2.19 μmol L?1); in months with higher NO3-N (5.91 to 6.01 μmol L?1), YR was 0 but exceptionally high in April probably because of the duration of fine days. At Okinoshima Island, YR calculated with data on a total of 40 species (3 to 22 species month?1) was high from March to July (except May), in which NO3-N was low (0.93 to 2.16 μmol L?1), but low from October to February among the months with higher NO3-N (4.56 to 5.62 μmol L?1). Totally, YR was negatively correlated with nitrate concentrations and NO3-N, which supports the possibility to use the value of YR as an indicator of nitrogen level although attention should also be paid to light conditions.  相似文献   

15.
The present investigation was aimed towards analyzing the potential of consortia of native filamentous microalgal strains (MC2), native unicellular microalgal strains (MC3), and selected microalgae from germplasm (MC1) in terms of nutrient removal, water quality improvement, and biomass production using primary treated sewage water. Highest NO3-N (90 %) and PO4-P (97.8 %) removal was obtained with MC2-inoculated sewage water. Highest decrease in total dissolved solids to 806 from 1,120 mg L?1 and highest increase in dissolved oxygen of 9.0 from 0.4 mg L?1 were obtained using MC2-inoculated sewage water on the sixth day. The biomass production was also highest in MC2 (1.07 g L?1) followed by MC1 and MC3 (0.90 and 0.94 g L?1, respectively) on the sixth day. The consortium of filamentous strains from native environment not only proved promising in nutrient removal efficiency but also led to enhanced biomass. The present study highlighted the utility of such a consortium for sewage wastewater treatment and the promise of sewage water as a growth medium for biomass production.  相似文献   

16.
Runoff quantity and quality from a 248 m2 extensive green roof and a control were compared in Connecticut using a paired watershed study. Weekly and individual rain storm samples of runoff and precipitation were analyzed for TKN, NO3 + NO2-N, NH3-N, TP, PO4-P, and total and dissolved Cu, Pb, Zn, Cd, Cr, and Hg. The green roof watershed retained 51.4% of precipitation during the study period based on area extrapolation. Overall, the green roof retained 34% more precipitation than predicted by the paired watershed calibration equation. TP and PO4-P mean concentrations in green roof runoff were higher than in precipitation but lower than in runoff from the control. The green roof was a sink for NH3-N, Zn, and Pb, but not for TP, PO4-P, and total Cu. It also reduced the mass export of TN, TKN, NO3 + NO2-N, Hg, and dissolved Cu primarily through a reduction in stormwater runoff. Greater than 90% of the total Cu, Hg, and Zn concentrations in the green roof runoff were in the dissolved form. The growing media and slow release fertilizer were probable sources of P and Cu in green roof runoff. Overall, the green roof was effective in reducing stormwater runoff and overall pollutant loading for most water quality contaminants.  相似文献   

17.
A literature review of data on nitrate uptake by phytoplankton suggests that nitrate levels above 20 μmol N·L?1 generally stimulated uptake rates in cultured unicellular algae and natural phytoplankton communities. This phenomenon indicates that phytoplankton cells acclimate to elevated nitrate levels by increasing their uptake capacity in a range of concentrations previously considered to be saturating. Cyanobacteria and flagellates were found to present a considerable capacity for acclimation, with low (0.1–2 μmol N·L?1) half‐saturation values (Ks) at low (5–20 μmol N·L?1) substrate levels and high (1–80 μmol N·L?1) Ks values at high (30–100 μmol N·L?1) substrate levels. However, some diatom genera (Rhizosolenia, Skeletonema, Thalassiosira) also appeared to possess a low affinity nitrate uptake system (Ks between 18 and 120 μmol N·L?1), which can help resolve the paradox of their presence in enriched seas. It follows that present models of nitrate uptake can severely underestimate the effects of high nitrate concentrations on phytoplankton dynamics and development. A more adequate approach would be to consider the possibility of multiphasic uptake involving several phase transitions as nitrate concentrations increased. Because it is a nonlinear phenomenon featuring strong thresholds, this effect appears to override that of other variables, such as irradiance, temperature, and cell size. Within the present context of eutrophication and for a range of concentrations that is becoming more and more ecologically relevant, equations are tentatively presented as a first approach to estimate Ks from ambient nitrate concentrations.  相似文献   

18.
The internal lipid, carotenoid, and toxin concentrations of Karenia brevis (C. C. Davis) Gert Hansen and Moestrup are influenced by its ability to use ambient light and nutrients for growth and reproduction. This study investigated changes in K. brevis toxicity, lipid class, and carotenoid concentrations in low‐light, nitrate‐replete (250 μmol quanta · m?2 · s?1, 80 μM NO3); high‐light, nitrate‐replete (960 μmol quanta · m?2 · s?1, 80 μM NO3); and high‐light, nitrate‐reduced (960 μmol quanta · m?2 · s?1, <5 μM NO3) mesocosms. Reverse‐phase HPLC quantified the epoxidation state (EPS) of the xanthophyll‐cycle pigments diadinoxanthin and diatoxanthin, and a Chromarod Iatroscan thin layer chromatography/flame ionization detection (TLC/FID) system quantified changes in lipid class concentrations. EPS did not exceed 0.20 in the low‐light mesocosm, but increased to 0.65 in the high‐light mesocosms. Triacylglycerol and monogalactosyldiacylglycerol (MGDG) were the largest lipid classes consisting of 9.3% to 48.7% and 37.3% to 69.7% of total lipid, respectively. Both lipid classes also experienced the greatest concentration changes in high‐light experiments. K. brevis increased EPS and toxin concentrations while decreasing its lipid concentrations under high light. K. brevis may mobilize its toxins into the surrounding environment by reducing lipid concentrations, such as sterols, limiting competition, or toxins are released because lipids are decreased in high light, reducing any protective mechanism against their own toxins.  相似文献   

19.
The Modder River is a relatively small river in the central region of the Free State Province, South Africa and has a mean annual runoff of 184 × 106m3. Botshabelo is a city, which has developed in the catchment area of the river, and its sewage outflows are discharged into the Klein Modder, a tributary of the Modder River. This study was conducted in order to determine the influence of Botshabelo's sewage outflow on the water quality of the river. It was determined that the Modder and Klein Modder Rivers do not generally follow distinctive seasonal patterns in terms of chemical parameters, although NO3-N and PO4-P concentrations usually increase with increasing flow and conductivity decreases with increasing flow. Physical parameters such as turbidity, flow and temperature did however follow distinctive seasonal patterns from February 1996 to December 1997, as did phytoplankton growth. Low chlorophyll-a concentrations were exhibited in the winter and higher concentrations during spring. In the Klein Modder River, algal blooms occurred more frequently, and the algal biomass was higher than in the Modder River. This could be ascribed to the higher nutrient concentrations and lower flow velocities in the former. The inflow of the Klein Modder River into the Modder River caused on average, 112% increase in PO4-P, 171% increase in NO3-N, 50% increase in chlorophyll-a concentration, and 230% increase in E. coli counts.  相似文献   

20.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号