首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solvent-accessible surfaces of nucleic acids   总被引:14,自引:0,他引:14  
Static solvent-accessible surface areas were calculated for DNA and RNA double helices of varied conformation, composition and sequence, for the single helix of poly(rC), and for a transfer RNA. The results show that for DNA and RNA double helices, two thirds of the water-accessible surface area become buried on double helix formation; phosphate oxygens retain near maximal exposure while the bases are 80% buried. Transfer RNA exposes slightly less surface per residue than does double-helical RNA, despite the presence of several additional “modified” groups, all of which are exposed significantly.When a probe corresponding to a single water molecule is used, both the total and atom type exposures are very similar for A-DNA and B-DNA, although marked differences appear in the major and minor groove exposures between the two conformations. For a given base-pair, the accessible surface area buried upon double-helical stacking is nearly constant (within 5%) for different sequences of neighboring base-pairs.For probes larger than single water molecules, there exist considerable differences in the total and atom type exposures of A-DNA and B-DNA. Conformational transitions between the A-DNA and B-DNA helical forms can thus be related to differences in the accessible areas for “structured” water, or a secondary hydration shell, rather than to interactions with individual water molecules of the primary hydration shell. The base-composition dependence of DNA helical conformation can be explained in terms of the opposing effects of thymine methyl groups of A · T base-pairs and the amino groups of G · C base-pairs upon the solvent within the grooves.The area calculations show that primarily the major groove of B-DNA and the minor groove of A-DNA have sufficient accessible surface area to be recognized by a probe size corresponding to the side-chains of amino acids.  相似文献   

2.
The interaction of polyamines with DNA: a 23Na NMR study.   总被引:1,自引:1,他引:0       下载免费PDF全文
The interaction between a variety of polyamines, both naturally occurring and synthetic, and calf thymus DNA has been studied using 23Na NMR. The relaxation behaviour of 23Na reflects the extent of interaction of Na+ with DNA phosphate groups and therefore the extent of charge neutralisation of DNA phosphate groups (P) by polyamine amino and imino groups (N) in solutions of DNa, polyamine and Na+. The studies reveal that whereas spermine and spermidine are capable of expelling nearly all of the Na+ ions from DNA at N/P approximately 1, diamines such as putrescine and homologues of spermine and spermidine are capable of neutralising only roughly 50% of DNA phosphates. The results provide a challenge to current models of DNA-polyamine interactions.  相似文献   

3.
Abstract

The effect of spermine on the A-DNA to B-DNA transition in d(CGCGAATTCGCG)2 has been investigated by five A-start molecular dynamics simulations, using the Cornell et al. potential. In the absence of spermine an A→B transition is initiated immediately and the DNA becomes equidistant from the A- and B-forms at 200ps. In three DNA-spermine simulations, when a spermine is located across the major groove of A-DNA in one of three different initial locations, the time taken to reach equidistance from the A- and B-forms is delayed until 800, 950 or 1000ps. In each case the A-form appears to be temporarily stabilized by spermine's electrostatic interactions with phosphates on both sides of the major groove. The onset of the A→B transition can be correlated with the spermine losing contact with phosphates on one side of the groove and with A-like → B-like sugar pucker transitions in the vicinity of the spermine bridge. However in the fifth trajectory, in which the spermine initially threads from the major groove via the backbone into the minor groove, the B→A transition occurs rapidly once again and the DNA is equidistant between the A- and B-forms within 300ps. This indicates that the mere presence of spermine is insufficient to delay the transition and that major groove binding stabilizes A-DNA.  相似文献   

4.
The effect of spermine on the A-DNA to B-DNA transition in d(CGCGAATTCGCG)(2) has been investigated by five A-start molecular dynamics simulations, using the Cornell et al. potential. In the absence of spermine an A-->B transition is initiated immediately and the DNA becomes equidistant from the A- and B-forms at 200ps. In three DNA-spermine simulations, when a spermine is located across the major groove of A-DNA in one of three different initial locations, the time taken to reach equidistance from the A- and B-forms is delayed until 800, 950 or 1000ps. In each case the A-form appears to be temporarily stabilized by spermine's electrostatic interactions with phosphates on both sides of the major groove. The onset of the A-->B transition can be correlated with the spermine losing contact with phosphates on one side of the groove and with A-like --> B-like sugar pucker transitions in the vicinity of the spermine bridge. However in the fifth trajectory, in which the spermine initially threads from the major groove via the backbone into the minor groove, the B-->A transition occurs rapidly once again and the DNA is equidistant between the A- and B-forms within 300ps. This indicates that the mere presence of spermine is insufficient to delay the transition and that major groove binding stabilizes A-DNA.  相似文献   

5.
The analysis of absorption and circular dichroism spectra in UV and IR regions showed that Ca2+ ions interact both with the phosphate groups of DNA and with the HMGB1 protein. Not only negatively charged C-terminal part of the protein molecule participates in interaction with metal ions but also its DNA-binding domains. The latter fact leads to the change of the mode of protein-DNA interaction. The presence of Ca2+ ions prevents formation of ordered supramolecular structures, specific for the HMGB1-DNA complexes, though promotes intermolecular aggregation. The structure of the complexes between DNA and the protein HMGB1 lacking C-terminal tail appears to be the most sensitive to the presence of Ca2+ ions. The data obtained allow to conclude that Ca2+ ions do not play a structural role in the HMGB1/DNA complexes and the presence of these ions is not necessary to DNA compaction in such systems.  相似文献   

6.
The interaction of DNA with the polyamine spermine(4+) (Spm(4+)), sodium ions, and water molecules has been studied using molecular dynamics computer simulations in a system modeling a DNA crystal. The simulation model consisted of three B-DNA decamers in a periodic hexagonal cell, containing 1200 water molecules, 8 Spm(4+), 32 Na(+), and 4 Cl(-) ions. The present paper gives a more detailed account of a recently published report of this system and compares results on this mixed Spm(4+)/Na(+)-cation system with an molecular dynamics simulation carried out for the same DNA decamer under similar conditions with only sodium counterions (Korolev et al., J. Mol. Biol. 308:907). The presence of Spm(4+) makes significant influence on the DNA hydration and on the interaction of the sodium ions with DNA. Spermine pushes water molecules out of the minor groove, whereas Na(+) attracts and organizes water around DNA. The major binding site of the Spm(4+) amino groups and the Na(+) ions is the phosphate group of DNA. The flexible polyamine spermine displays a high presence in the minor groove but does not form long-lived and structurally defined complexes. Sodium ions compete with Spm(4+) for binding to the DNA bases in the minor groove. Sodium ions also have several strong binding sites in the major groove. The ability of water molecules, Spm(4+), and Na(+) to modulate the local structure of the DNA double helix is discussed.  相似文献   

7.
Adjacent phosphate oxygen atoms in A and Z-DNA are located much closer together than in the B form and can be hydrated more economically due to the formation of water bridges between them, whereas in the B form phosphates are hydrated individually. This principle of hydration economy of phosphate groups discovered by Saenger and colleagues could not be applied to the B-D transition, which, like the B-A and B-Z transitions, occurs in a situation of water deficiency, because the distances between adjacent phosphates of individual polynucleotide chains in the D form are not much different from B-DNA. It follows from our calculations of B and D-DNA accessibility to solvent performed by the method of Lee & Richards, and from a simulation of solvent structure near DNA, that there is an economy of hydration only for the minor groove atoms. This feature and some experimental data can explain why only a limited range of sequences consisting of A.T or I.C pairs undergo the transition to the D form. The conformational transition in DNAs with such sequences to a poly[d(A]).poly[d(T])-like conformation (Bh-DNA), which is accompanied by a narrowing of the minor groove, can be explained in the same way. Calculations suggest that in the D-form minor groove of different A-T or I-C DNAs there is a double-layer hydration spine similar to that observed by Drew & Dickerson in the A-T tract of the d(C-G-C-G-A-A-T-T-C-G-C-G) dodecamer. The B-D and B-Bh transitions in A + T-rich DNAs can have biological implications, e.g. they can facilitate DNA bending upon the interaction with proteins.  相似文献   

8.
The recently developed anthracycline 4'-epiadriamycin, an anti-cancer drug with improved activity, differs from adriamycin by inversion of the stereochemistry at the 4'-position. We have cocrystallized 4'-epiadriamycin with the DNA hexamer d(CGATCG) and solved the structure to 1.5 A resolution using x-ray crystallography. One drug molecule binds at each d(CG) step of the hexamer duplex. The anthracycline sugar binds in the minor groove. A feature of this complex which distinguishes it from the earlier DNA:adriamycin complex is a direct hydrogen bond from the 4'-hydroxyl group of the anthracycline sugar to the adenine N3 on the floor of the DNA minor groove. This hydrogen bond results directly from inversion of the stereochemistry at the 4'-position. Spermine molecules bind in the major groove of this complex. In anthracycline complexes with d(CGATCG) a spermine molecule binds to a continuous hydrophobic zone formed by the 5-methyl and C6 of a thymidine, C5 and C6 of a cytidine and the chromophore of the anthracycline. This report discusses three anthracycline complexes with d(CGATCG) in which the spermine molecules have different conformations yet form extensive van der Waals contacts with the same hydrophobic zone. Our results suggest that these hydrophobic interactions of spermine are DNA sequence specific and provide insight into the question of whether DNA:spermine complexes are delocalized and dynamic or site-specific and static.  相似文献   

9.
Transcription of the his3 gene region in Saccharomyces cerevisiae   总被引:48,自引:0,他引:48  
The dodecamer d(CpGpCpGpApApTpTpCpGpCpG) or C-G-C-G-A-A-T-T-C-G-C-G crystallizes as slightly more than one full turn of right-handed B-DNA. It is surrounded in the crystal by one bound spermine molecule and 72 ordered water molecules, most of which associate with polar N and O atoms at the exposed edges of base-pairs. Hydration within the major groove is principally confined to a monolayer of water molecules associated with exposed N and O groups on the bases, with most association being monodentate. Waters hydrating backbone phosphate oxygens tend not to be ordered, except where they are immobilized by 5-methyl groups from nearby thymines. In contrast, the minor groove is hydrated in an extensive and regular manner, with a zigzag “spine” of first- and second-shell hydration along the floor of the groove serving as a foundation for less-regular outer shells extending beyond the radius of the phosphate backbone. This spine network bridges purine N-3 and pyrimidine O-2 atoms in adjacent base-pairs. It is particularly regular in the A-A-T-T center, and is disrupted at the C-G-C-G ends, in part by the presence of the N-2 amino groups on guanine residues. The minor groove hydration spine may be responsible for the stability of the B form of polymers containing only A · T and I · C base-pairs, and its disruption may explain the ease of transition to the A form of polymers with G · C pairs.  相似文献   

10.
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.  相似文献   

11.
DNA from Ehrlich ascites tumor (EAT) cells and from human placenta was examined for covalent bonds between hydroxy amino acid residues in peptides and nucleotide phosphate groups. The residual proteinaceous material in highly purified DNA was radiolabelled with 125Iodine and the linking-groups between peptides and nucleotides released by combined protease and nuclease treatment were investigated with respect to their chemical and enzymatic stabilities. The residual nucleotide(s)-peptide(s) fraction from DNA isolated after prolonged alkaline cell lysis and phenol extraction contains mainly alkali and acid-stable but phosphodiesterase-sensitive peptide-nucleotide complexes which indicates phosphodiesters between tyrosyl residues in peptides and nucleotide phosphates. In contrast, the linking-group fraction from DNA isolated under native conditions contains additional peptide components. (a) Phospho-peptides that co-purify with DNA but that are not covalently bound to nucleotides. (b) A fraction of peptides that is released from nucleotides by alkali in a time and concentration-dependent reaction. Evidence is presented indicating that the latter fraction involves phospho-triesters between hydroxy amino acid residues in peptides and internucleotide phosphates. The phosphodiesters between hydroxy amino acids and nucleotide phosphates representing the predominant class of peptide-nucleotide complexes in alkali-denatured DNA are most likely side products of peptide-nucleotide phospho-triester hydrolysis.  相似文献   

12.
The interaction between the 15-mer oligonucleotide d[A(TA)(7)].d[T(AT)(7)] and the three biogenic polyamines, putrescine, spermidine and spermine, under physiological conditions has been studied by Raman spectroscopy. Solutions containing 60 mM (phosphate) of the oligonucleotide and different polyamine concentrations ranging from 1 to 75 mM have been studied. Both natural and heavy water were used as solvents. Difference Raman spectra were computed by subtracting the sum of the separated component spectra from the experimental spectra of the complexes. The Raman data suggested that the interaction of biogenic polyamines with d[A(TA)(7)].d[T(AT)(7)] presents differences related with their sizes and electric charges. Preferential bindings through the oligonucleotide minor groove for putrescine and spermidine were proposed. Spermine would interact by both minor and major grooves, although interaction by the minor groove seems to be more favored. Main reactive sites were thymine-O2 and adenine-N3 atoms at the minor grooves and adenine-N7 and thymine-O4 at the major groove. Electrostatic attractions between the polyamine amino and oligonucleotide phosphodioxy groups were also proposed. Under our experimental conditions, no macromolecular effects on d[A(TA)(7)].d[T(AT)(7)] (changes on secondary or tertiary structures) were detected from Raman spectroscopy, contrary to what happened for GC sequences at the same experimental settings. This fact agrees with the role of the biogenic polyamines during the first steps of the macromolecular synthesis, which involve DNA opening in AT motifs.  相似文献   

13.
The repressor of bacteriophage P22 (P22R) discriminates between its various DNA binding sites by sensing the identity of non-contacted base pairs at the center of its binding site. The “indirect readout” of these non-contacted bases is apparently based on DNA's sequence-dependent conformational preferences. The structures of P22R–DNA complexes indicate that the non-contacted base pairs at the center of the binding site are in the B′ state. This finding suggests that indirect readout and therefore binding site discrimination depend on P22R's ability to either sense and/or impose the B′ state on the non-contacted bases of its binding sites. We show here that the affinity of binding sites for P22R depends on the tendency of the central bases to assume the B′-DNA state. Furthermore, we identify functional groups in the minor groove of the non-contacted bases as the essential modulators of indirect readout by P22R. In P22R–DNA complexes, the negatively charged E44 and E48 residues are provocatively positioned near the negatively charged DNA phosphates of the non-contacted nucleotides. The close proximity of the negatively charged groups on protein and DNA suggests that electrostatics may play a key role in the indirect readout process. Changing either of two negatively charged residues to uncharged residues eliminates the ability of P22R to impose structural changes on DNA and to recognize non-contacted base sequence. These findings suggest that these negatively charged amino acids function to force the P22R-bound DNA into the B′ state and therefore play a key role in indirect readout by P22R.  相似文献   

14.
Biogenic polyamines putrescine, spermidine, and spermine are essential molecules for proliferation in all living organisms. Direct interaction of polyamines with nucleic acids has been proposed in the past based on a series of experimental evidences, such as precipitation, thermal denaturation, or protection. However, binding between polyamines and nucleic acids is not clearly explained. Several interaction models have also been proposed, although they do not always agree with one another. In the present work, we make use of the Raman spectroscopy to extend our knowledge about polyamine-DNA interaction. Raman spectra of highly polymerized calf-thymus DNA at different polyamine concentrations, ranging from 1 to 50 mM, have been studied for putrescine, spermidine, and spermine. Both natural and heavy water were used as solvents. Difference Raman spectra have been computed by subtracting the sum of the separated component spectra from the experimental spectra of the complexes. The analysis of the Raman data has supported the existence of structural specificities in the interactions, at least under our experimental conditions. These specificities lead to preferential bindings through the DNA minor groove for putrescine and spermidine, whereas spermine binds by the major groove. On the other hand, spermine and spermidine present interstrand interactions, whereas putrescine presents intrastrand interactions in addition to exo-groove interactions by phosphate moieties.  相似文献   

15.
16.
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOgg1) initiate the base excision repair pathway for 7,8-dihydro-8-oxoguanine (8-oxoG) residues present in DNA. Recent structural and biochemical studies of Fpg-DNA and hOgg1-DNA complexes point to the existence of extensive interactions between phosphate groups and amino acids. However, the role of these contacts and their physiological relevance remains unclear. In the present study, we combined chemical cross-linking and electrospray ionization mass spectrometry (ESI/MS/MS) approaches to identify interacting residues in the Fpg-DNA and hOgg1-DNA complexes. The active centers of Fpg and hOgg1 were cross-linked with a series of reactive oligonucleotide duplexes containing both a single 8-oxoG residue and an O-ethyl-substituted pyrophosphate internucleotide (SPI) group at different positions in duplex DNA. The cross-linking efficiency reached 50% for Fpg and 30% for hOgg1. We have identified seven phosphate groups on both strands of the DNA duplex specifically interacting with nucleophilic amino acids in Fpg, and eight in hOgg1. MS/MS analysis of the purified proteolytic fragments suggests that lysine 56 of Fpg and lysine 249 of hOgg1 cross-link to the phosphate located 3' to the 8-oxoG residue. Site-specific mutagenesis analysis of Fpg binding to DNA substrate confirms the conclusions of our approach. Our results are consistent with crystallographic data on the Fpg-DNA complex and provide new data on the hOgg1-DNA interaction. The approach developed in this work provides a useful tool to study pro- and eukaryotic homologues of Fpg as well as other repair enzymes.  相似文献   

17.
The interactions were studied of DNA with the nonhistone chromatin protein HMGB1 and histone H1 in the presence of manganese(II) ions at different protein to DNA and manganese to DNA phosphate ratios by using absorption and optical activity spectroscopy in the electronic [ultraviolet (UV) and electronic circular dichroism ECD)] and vibrational [infrared (IR) and vibrational circular dichroism (VCD)] regions. In the presence of Mn2+, the protein-DNA interactions differ from those without the ions and cause prominent DNA compaction and formation of large intermolecular complexes. At the same time, the presence of HMGB1 and H1 also changed the mode of interaction of Mn2+ with DNA, which now takes place mostly in the major groove of DNA involving N7(G), whereas interactions between Mn2+ and DNA phosphate groups are weakened by histone molecules. Considerable interactions were also detected of Mn2+ ions with aspartic and glutamic amino acid residues of the proteins.  相似文献   

18.
Crystalline complexes of yeast tRNA(phe) and the oligopeptide antibiotics netropsin and distamycin A were prepared by diffusing drugs into crystals of tRNA. X-ray structure analyses of these complexes reveal a single common binding site for both drugs which is located in the major or deep groove of the tRNA T-stem. The netropsin-tRNA complex is stabilized by specific hydrogen bonds between the amide groups of the drug and the tRNA bases G51 O(6), U52 O(4) and G53 N(7) on one strand, and is further stabilized by electrostatic interactions between the positively charges guanidino side chain of the drug and the tRNA phosphate P53 on the same strand and the positively charged amidino propyl side chain and the phosphates P61, P62 and P63 on the opposite strand of the double helix. These results are in contrast to the implicated minor groove binding of these drugs to non-guanine sequences in DNA. The binding to the GUG sequence in tRNA implies that major groove binding to certain DNA sequences is possible.  相似文献   

19.
Molecular mechanics calculations of the binding of spermine to a number of solvated DNA helices have led to the development of a new model for spermine complexation. The structural details of the complexes formed with d(GCGCGCGCGC)2 and d(ATATATATAT)2 decamers allowed a rationalization of the observed experimental differences for binding to these two helices. For d(ATATATATAT)2 it was concluded that spermine remains in a cross-major groove binding site. Conversely, for d(GCGCGCGCGC)2 spermine reorientation via specific ligand-base-pair hydrogen-bond formation allows complexation along the major groove. The solvent plays an important role in differentiating the two binding modes. A mechanism of spermine complexation to natural DNA is postulated from these results. Past experimental data are also considered in the context of the new model.  相似文献   

20.
Hydration of transfer RNA molecules: a crystallographic study   总被引:3,自引:0,他引:3  
E Westhof  P Dumas  D Moras 《Biochimie》1988,70(2):145-165
Four crystal structures of transfer RNA molecules were refined at 3 A resolution with the inclusion of the solvent molecules found in the difference maps: yeast tRNA-phe in the orthorhombic form, yeast tRNA-phe in the monoclinic form and yeast tRNA-asp in the A and B forms. Over 100 solvent molecules were located in each tRNA crystal. Several hydration schemes are found repeatedly in the 4 crystals. The tertiary interactions in the corner of the L-shaped molecule attract numerous solvent molecules which bridge the ribose hydroxyl O(2') atoms, base exocyclic atoms and phosphate anionic oxygen atoms. Conservation of bases leads to conservative localized hydration patterns. Several solvent molecules are found stabilizing unusual base pairs like the G-U pairs and those involving the pseudouridine base. Water bridges between the O(2') and the exocyclic atom O2 of pyrimidines or the N3 atom of purines are common. Water bridges occur frequently between successive anionic oxygen atoms of each strand as well as between N7 or other exocyclic atoms of successive bases in the major groove. Magnesium ions or spermine molecules are found to bind in the major groove of tRNA helices without specific interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号