首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of fatty acids and contents of eicosapentaenoic acid (EPA) and polyunsaturated fatty acids (PUFAs) of the economically important marine diatom, Phaeodactylum tricornutum (Bohlin), were investigated to see whether reducing the culture temperature enhances the production of EPA and PUFAs. The contents of EPA and PUFAs of P. tricornutum were found to be higher at lower temperature when cultured at 10, 15, 20, or 25°C. When the cells grown at 25°C were shifted to 20, 15, or 10°C, the contents per dry mass of PUFAs and EPA increased to the maximal values in 48, 24, and 12 h, respectively. The highest yields of PUFAs and EPA per unit dry mass (per unit volume of culture) were 4.9% and 2.6% (12.4 and 6.6 mg·L?1), respectively, when temperature was shifted from 25 to 10°C for 12 h, both being raised by 120% compared with the control. The representative fatty acids in the total fatty acids, when temperature was lowered from 25 to 10°C, decreased proportionally by about 30% in C16:0 and 20% in C16:1(n?7) but increased about 85% in EPA. It was concluded that lowering culture temperature of P. tricornutum could significantly raise the yields of EPA and PUFAs.  相似文献   

2.
The relationship between elongation growth and the incorporation of [3H]gibberellin A1 ([3H]GA1) into a 2,000g pelletable (2KP) fraction from lettuce (Lactuca sativa L., cv. Arctic) hypocotyl sections has been examined. Sections were loaded with incremental amounts of GA1 under conditions where growth was arrested (5° C) or permitted (30° C) and, after 16 h, all were transferred to a GA-free medium at 30° C. Growth and 2KP radioactivity were measured at this point and after a further 24 h in the chase medium. Uptake was reduced by 80% at 5° C, as compared to 30° C, but 2KP labelling and protein synthesis were only reduced by half. The growth rate of the 5° C pretreated sections during the chase period was comparable to that observed during the pulse in the 30° C material but the dose/response relationship was flatter. Low temperature sections incorporated a much higher percentage of GA1 uptake into the 2KP fraction (27% at maximum) but the absolute levels of labelling at this temperature were lower than those measured at 30° C. The data are interpreted as showing that 2KP labelling is not a consequence of growth. It must either precede response or be an unconnected concurrent process.  相似文献   

3.
The seasonal abundance of epilithic algae was correlated with major physico-chemical parameters in a first-order, heavily shaded stream in northern Arizona. Diatoms made up over 85%, by numerical abundance, of the epilithon community Light energy, water temperature, and stream discharge were most highly correlated with seasonal abundance of epilithic diatom taxa when analyzed with stepwise multiple regression. None of the chemical variables measured in the study (NO3-N, O-PO4, SiO2, including PH) was found to be significantly correlated with the seasonal community structure of epilithic diatoms. Total diatom cell densities showed a significant negative correlation to stream bed light energy. Likewise, total diatom cell densities along a transect in the stream bed showed a negative correlation to current velocity during those months when base flow was low and stable, and current velocity was ≤25 cm·sec-1. Most diatom taxa had highest cell densities at temperatures < 16°C and at daily mean stream bed light levels < 400 μE·m?2·s?1. Highest cell densities of green algae occurred at temperatures between 6–16°C and at daily mean stream bed light levels of > 400 μE·m?2·s?1. Blue-green algae (cyanobacteria) grew best at the highest recorded water temperatures and daily mean stream bed light energy (16–20°C and 900–1200 μE·m?2·s?1). Abrupt increases in NO3-N coincided with a brief pulse of Nostoc pruniforme colonies during June, and leaf drop from Alnus oblongifolia during October.  相似文献   

4.
This work was aimed at producing inulinase by solid-state fermentation of sugarcane bagasse, using factorial design to identify the effect of corn steep liquor (CSL) and soybean bran concentration, particle size of bagasse and size of inoculum. Maximum inulinase activity achieved was 250 U per g of dry substrate (gds) at 20% (w/w) of CSL, 5% (w/w) of soybean bran, 1 × 1010 cells mL−1 and particle size of bagasse in the range 9/32 mesh. The use of soybean bran decreased the time to reach maximum activity from 96 to 24 h and the maximum productivity achieved was 8.87 U gds−1 h−1. The maximum activity was obtained at pH 5.0 and 55.0°C. Within the investigated range, the enzyme extract was more thermostable at 50.0°C, showing a D-value of 123.1 h and deactivation energy of 343.9 kJ gmol−1. The extract showed highest stability from pH 4.5 to 4.8. Apparent K m and V max are 7.1 mM and 17.79 M min−1, respectively.  相似文献   

5.
This study was conducted to identify an indicator organism(s) in evaluating the pathogen-reducing capacity of biogas plants. Fresh cow manure containing 104 to 105 colony forming unit (CFU) per milliliter of Escherichia coli and Enterococcus faecalis along with an inoculated Clostridium perfringens strain were exposed to 37°C for 15 days, 55°C for 48 h, and 70°C for 24 h. C. perfringens was the most heat-resistant organism followed by E. faecalis, while E. coli was the most heat-sensitive organism. E. coli was reduced below detection limit at all temperatures with log10 reductions of 4.94 (10 s), 4.37 (40 min), and 2.6 (5 days) at 70°C, 55°C, and 37°C, respectively. Maximum log10 reductions for E. faecalis were 1.77 at 70°C (1 day), 1.7 at 55°C (2 days) and 3.13 at 37°C (15 days). For C. perfringens, maximum log10 reduction at 37°C was 1.35 log10 units (15 days) compared to less than 1 unit at 55 and 70°C. Modeling results showed that E. faecalis and C. perfringens had higher amount of heat-resistant fraction than E. coli. Thus, E. faecalis and C. perfringens can be used as indicator organisms to evaluate pathogen-reducing capacity in biogas plants at high temperatures of 55°C and 70°C while at 37°C E. coli could also be included as indicator organism.  相似文献   

6.
The effect of temperature on the silicon limited growth and nutrient kinetics of Stephanodiscus minutus Grun. was examined using batch and semicontinuous culture methods. Short-term batch culture methods gave maximum growth rates which were essentially constant over the temperature range of 10° to 20°C (μ3= 0.71–0.80 d?1). The half-saturation constant for growth (Ks) was significantly lowest at 10°C (Ks= 0.31 μM Si; 0.22–0.41), and higher at both 15°C (Ks= 1.03 μM Si; 0.68–1.47) and 20°C (Ks= 0.88 μM Si; 0.60–1.22). Two methods were used to evaluate the semicontinuous experiments. The Droop relationship showed that the minimum cell quota was about 1.50 × 10?7 nmol Si cell?1, but there was much overlap in the results at all three temperatures. The Monod growth relationship for the semicontinuous experiments gave estimates of Ks which were lowest at 15°C (Ks= 0.12 μM Si), and higher at 10°C (Ks= 0.68 μM Si) and 20°C (Ks= 1.24 μM Si), although 95% confidence intervals overlapped. The maximum growth rate estimates for the semicontinuous experiments were similar at 10° and 15°, and higher at 20°C, but the number of points used in making the calculations makes the results less reliable than those from batch cultures. Generally, there were no consistent significant differences in the silicon limited growth of S. minutus over the temperature range studied. Our values of Ks for S. minutus are the lowest recorded for a freshwater diatom, and are consistent with the distribution of this species in nature. Generally, this species becomes abundant in areas with high phosphorus loading and very low silicon levels (low Si:P loading rates). Stephanodiscus species are also fossil indicators of eutrophication in north temperate lakes.  相似文献   

7.
Human glioma cells (138 MG) were found to take up 3-O-methyl-d -glucose (3-OMG) by a saturable low affinity transport system with a Km of 20 mm and a Vmax of 500 nmol/mg protein/min. About 20 per cent of the total uptake was due to passive diffusion. d -Glucose was a competitive inhibitor with a Ki of 10 mm . Follow-up experiments indicated that the same transport mechanism is involved in the uptake of n-glucose and 3-OMG. Phloretin (0·02 mm ) and cytochalasin B (0·002 mm ) strongly inhibited the uptake of 3-OMG, whereas phlorizin (0·02 mm ), ouabain (0·1 mm ), NaCN (0·5 mm ) and iodoacetic acid (1·0 mm ) had no effect. The data suggest that 3-OMG and d -glucose enter 138 MG cells mainly by a Na+-independent passive carrier-mediated transport system. Serum-deprivation doubled the population doubling time (Td) without affecting the total uptake of 3-OMG. An increase in the non-specific (diffusional) uptake was balanced by a decrease in the specific (carrier-medíated) uptake. After addition of dibutyryl cyclic AMP (dbcAMP, 0·25 mm ) the cells attained a morphology characteristic of differentiated glia cells. Td was maintained unchanged. The non-specific uptake of 3-OMG was not affected in cells grown in serum-containing medium plus dbcAMP, whereas the specific uptake increased by 40 per cent and there-fore also the total uptake. Similar, but more pronounced, changes were observed if serum-deprived cells were treated with dbcAMP.  相似文献   

8.
Growth and sexual reproduction of the marine littoral diatom Cocconeis scutellum Ehrenb. var. ornata Grun. were investigated at 30 different combinations of temperature (5, 10, 14, 18, 22° C), irradiance (20, 60, 100 μE·m?2·s?1) and daylength (14:10 and 10:14 h LD cycle). Growth occurred at all combinations. The optimal growth was observed at 14–18° C, long daylength and highest-to-moderate irradiance, and at 18° C, short daylength and highest irradiance. Sexual reproduction on the other hand occurred between 5 and 18° C, and the optimal condition was 10–14° C and short daylength. Annual cyclic, and sesonal changes in the distribution of cell size (valve length) were observed in a field population. These changes were characterized by an annual minimum in mean cell size in autumn, an annual maximum in winter, a slight decrease from the mean in spring–middle summer, a rapid decrease from the mean in late summer–early autumn, and appearance of bimodal distribution of cell size in winter. These changes were caused by sexual reproduction in autumn, rapid growth in late summer–early autumn and slow growth in other seasons, and poor viability of small cells near the lower end of the size range.  相似文献   

9.
Temperature and irradiance are the most important factors affecting marine benthic microalgal photosynthetic rates in temperate intertidal areas. Two temperate benthic diatoms species, Amphora cf. coffeaeformis (C. Agardh) Kütz. and Cocconeis cf. sublittoralis Hendey, were investigated to determine how their photosynthesis responded to temperatures ranging from 5°C to 50°C after short‐term exposure (1 h) to a range of irradiance levels (0, 500, and 1,100 μmol photons · m?2 · s?1). Significant differences were observed between the temperature responses of maximum relative electron transport rate (rETRmax), photoacclimation index (Ek), photosynthetic efficiency (α), and effective quantum yield (ΔF/Fm’) in both species. A. coffeaeformis had a greater tolerance to higher temperatures than C. sublittoralis, with nonphotochemical quenching (NPQ) activated at temperatures of 45°C and 50°C. C. sublittoralis, however, demonstrated a more rapid rate of recovery at ambient temperatures. Temperatures between 10°C and 20°C were determined to be optimal for photosynthesis for both species. High temperatures and irradiances caused a greater decrease in ΔF/Fm’ values. These results suggest that the effects of temperature are species specific and that short‐term exposure to adverse temperature slows the recovery process, which subsequently leads to photoinhibition.  相似文献   

10.

The effects of temperature, irradiance, and desiccation on the photosynthesis of a cultivated Japanese green alga Caulerpa lentillifera (Caulerpaceae) were determined by a pulse amplitude modulation (PAM)-chlorophyll fluorometer and dissolved oxygen sensors. The photochemical efficiency in the photosystem II (Fv/Fm and ΔF/Fm') during the 72-h temperature exposures (8, 12, 16, 20, 24, 28, 32, 36, and 40°C) was generally stable at 16–32°C but quickly dropped at lower and higher temperatures. The photosynthesis–temperature curve at 200 μmol photons m?2 s?1 also revealed that the maximum gross photosynthesis (GPmax) occurred at 30.7°C (30.5–30.9, 95% highest density credible intervals). Photosynthesis–irradiance curves at 16, 24, and 32°C quickly saturated, then expressed photoinhibition, and revealed that the maximum net photosynthetic rates (NPmax) and saturation irradiance (Ek) were highest at 32°C and lowest at 16°C. Continuous 6-h exposure to irradiances of 200 (low) and 400 (high) μmol photons m?2 s?1 at 16, 24, and 32°C expressed greater declines in their ΔF/Fm' at 16°C, revealing chronic chilling-light stress. The response to continuous desiccation (~480 min) under 50% humidity at 24°C showed that ΔF/Fm' dropped to zero at 480-min aerial exposure, and the treatments of more than 60-min desiccation did not return to the initial level even after 24-h subsequent rehydration in seawater. Likewise, ΔF/Fm' fell when the absolute water content (AWC) of the frond dropped below AWC of 90% and mostly did not return to the initial level even after 24-h subsequent rehydration in seawater, signifying a low tolerance to desiccation.

  相似文献   

11.
The thermal sensitivity of scope for activity was studied in the Antarctic nototheniid fish Pagothenia borchgrevinki. The scope for activity of P. borchgrevinki at 0°C was 189 mg O2 kg−1 h−1 (factorial scope 6.8) which is similar to that of temperate and tropical species at their environmental temperatures, providing no evidence for metabolic cold adaptation of maximum activity. The scope for activity increased to a maximum value of 266 mg O2 kg−1 h−1 (factorial scope 8.3) at 3°C and then decreased from 3 to 6°C. The thermal sensitivity of critical swimming speed was also investigated and followed a similar pattern to aerobic scope for activity, suggesting oxygen limitation of aerobic performance. Oxygen consumption rates and ventilation frequencies were monitored for 24 h after the swimming challenge and the recovery of both parameters to resting levels was rapid and independent of temperature.  相似文献   

12.
—The uptake of [3H]5HT, [3H]dopamine, [3H]noradrenaline and [3H]octopamine into the auricle of Helix pomatia was studied. When tissues were incubated at 25°C in media containing radioactive amines, tissue:medium ratios of about 49:1, 14:1 and 5:1 for 5-HT, dopamine, noradrenaline, and octopamine respectively were obtained after a 20–30 min incubation time. Tissues incubated at 25°C in media containing radioactive amines for 20–30 mins showed that almost all (96%) the radioactivity was present as unchanged [3H]5-HT, [3H]dopamine, [3H]octopamine or [3H]noradrenaline. The high tissue:medium ratios for 5-HT and dopamine, but not for noradrenaline and octopamine, showed saturation kinetics which were dependent upon temperature and sodium ions. From the Lineweaver–Burk plots, two uptake mechanisms for 5-HT at 25°C were resolved; the high affinity uptake process having a Km1 value of 6.0 ± 10?8m and a Vm1 value of 0.115 nmol/g/min while the lower affinity process had a Km2 value of 1.04 ± 10?6m and a Vm2 value of 0.66nmol/g/min. At 0°C a single uptake mechanism for 5-HT occurred which gave a Km value of 5.02 ± 10?8m and a Vm value of 0.0165 nmol/g/min. In the case of dopamine, the Lineweaver–Burk plot at 25°C showed a single uptake process with values for Km and Vm of 1.55 ± 10?7m and 0.086 nmol/g/min respectively. This process did not function at 0°C. The effect of various agents and ions upon the accumulation processes for all amines was also studied, and the data indicate that the same neurons probably accumulate more than one amine type. It is concluded that 5-HT and dopamine uptake in the auricle is a mechanism for inactivating these substances at 25°C and that an uptake mechanism for 5-HT also functions at 0°C. The results are discussed from the point of view of 5-HT's being the cardioexcitatory substance in the snail heart.  相似文献   

13.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

14.
Aims: The objective was to study the response of Cronobacter sakazakii ATCC 29544 cells to heat, pulsed electric fields (PEF), ultrasound under pressure (Manosonication, MS) and ultraviolet light (UV‐C) treatments after exposure to different sublethal stresses that may be encountered in food‐processing environments. Methods and Results: Cronobacter sakazakii stationary growth‐phase cells (30°C, 24 h) were exposed to acid (pH 4·5, 1 h), alkaline (pH 9·0, 1 h), osmotic (5% NaCl, 1 h), oxidative (0·5 mmol l?1 H2O2, 1 h), heat (47·5°C, 1 h) and cold (4°C, 4 h) stress conditions and subjected to the subsequent challenges: heat (60°C), PEF (25 kV cm?1, 35°C), MS (117 μm, 200 kPa, 35°C) and UV‐C light (88·55 mW cm?2, 25°C) treatments. The inactivation kinetics of Csakazakii by the different technologies did not change after exposure to any of the stresses. The combinations of sublethal stress and lethal treatment that were protective were: heat shock–heat, heat shock–PEF and acid pH–PEF. Conversely, the alkaline shock sensitized the cells to heat and UV‐C treatments, the osmotic shock to heat treatments and the oxidative shock to UV‐C treatments. The maximum adaptive response was observed when heat‐shocked cells were subjected to a heat treatment, increasing the time to inactivate 99·9% of the population by 1·6 times. Conclusions: Cronobacter sakazakii resistance to thermal and nonthermal preservation technologies can increase or decrease as a consequence of previous exposure to stressing conditions. Significance and Impact of the Study: The results help in understanding the physiology of the resistance of this emerging pathogen to traditional and novel preservation technologies.  相似文献   

15.
Temperature is expected to modify the effects of ultraviolet radiation (UVR) on photosynthesis by affecting the rate of repair. We studied the effect of short‐term (1 h) and long‐term (days) acclimation to temperature on UVR photoinhibition in the diatom Thalassiosira pseudonana Hasle et Heimdal. Photosynthesis was measured during 1 h exposures to varying irradiances of PAR and UVR + PAR at 15, 20, and 25°C, the latter corresponding to the upper temperature limit for optimal growth in T. pseudonana. The exposures allowed the estimation of photosynthesis–irradiance (P–E) curves and biological weighting functions (BWFs) for photoinhibition. For the growth conditions used, temperature did not affect photosynthesis under PAR. However, photoinhibition by UVR was highly affected by temperature. For cultures preacclimated to 20°C, the extent of UVR photoinhibition increased with decreasing temperature, from 63% inhibition of PAR‐only photosynthesis at 25°C to 71% at 20°C and 85% at 15°C. These effects were slightly modified after several days of acclimation: UVR photoinhibition increased from 63% to 75% at 25°C and decreased from 85% to 80% at 15°C. Time courses of photochemical efficiency (ΦPSII) under UVR + PAR were also fitted to a model of UVR photoinhibition, allowing the estimation of the rates of damage (k) and repair (r). The r/k values obtained for each temperature treatment verified the responses observed with the BWF (R2 = 0.94). The results demonstrated the relevance of temperature in determining primary productivity under UVR exposures. However, the results suggested that temperature and UVR interact mainly over short (hours) rather than long (days) timescales.  相似文献   

16.
The thermotolerant fungus, Aspergillus niger NCIM 563, was used for production of extracellular phytase on agricultural residues: wheat bran, mustard cake, cowpea meal, groundnut cake, coconut cake, cotton cake and black bean flour in solid state fermentation (SSF). Maximum enzyme activity (108 U g−1 dry mouldy bran, DMB) was obtained with cowpea meal. During the fermentation phytic acid was hydrolysed completely with a corresponding increase in biomass and phytase activity within 7 days. Phosphate in the form of KH2PO4 (10 mg per 100 g of agriculture residue) increased phytase activity. Among various surfactants added to SSF, Trition X-100 (0.5%) exhibited a 30% increase in phytase activity. The optimum pH and temperature of the crude enzyme were 5.0 and 50°C respectively. Phytase activity (86%) was retained in buffer of pH 3.5 for 24 h. The enzyme retained 75% of its activity on incubation at 55°C for 1 h. In the presence of 1 mM K+ and Zn2+, 95% and 55% of the activity were retained. Scanning electron microscopy showed a high density growth of fungal mycelia on wheat bran particles during SSF. Journal of Industrial Microbiology & Biotechnology (2000) 24, 237–243. Received 07 June 1999/ Accepted in revised form 18 December 1999  相似文献   

17.
The effects of irradiance, temperature, thermal‐ and chilling‐light sensitivities on the photosynthesis of a temperate alga, Sargassum macrocarpum (Fucales) were determined by a pulse amplitude modulation (PAM)‐chlorophyll fluorometer and dissolved oxygen sensors. Oxygenic photosynthesis–irradiance curves at 8, 20, and 28°C revealed that the maximum net photosynthetic rates (NP max) and saturation irradiance were highest at 28°C, and lowest at 8°C. Gross photosynthesis and dark respiration determined over a range of temperatures (8–36°C) at 300 μmol photons m?2 s?1 revealed that the maximum gross photosynthetic rate (GPmax) occurred at 27.8°C, which is consistent with the highest seawater temperature in the southern distributional limit of this species in Japan. Additionally, the maximum quantum yields of photosystem II (F v/F m) during the 72‐h temperature exposures were stable at 8–28°C, but suddenly dropped to zero at higher temperatures, indicative of PSII deactivation. Continuous exposure (12 h) to irradiance of 200 (low) and 1000 (high) μmol photons m?2 s?1 at 8, 20, and 28°C revealed greater declines in their effective quantum yields (Φ PSII) under high irradiance. While Φ PSII under low irradiance were very similar with the initial F v/F m under 20 and 28°C, values rapidly decreased with exposure duration at 8°C. At this temperature, F v/F m did not recover to initial values even after 12 h of dark acclimation. Final F v/F m of alga at 28°C under high irradiance treatment also did not recover, suggesting its sensitivity to photoinhibition at both low and high temperatures. These photosynthetic characteristics reflect both the adaptation of the species to the general environmental conditions, and its ability to acclimate to seasonal changes in seawater temperature within their geographical range of distribution.  相似文献   

18.
Synthesis of stress proteins after heat shock and different periods of UV-B radiation were investigated with marine diatom species from the North Sea Ditylum brightwellii, Lithodesmium variabile, Odontella sinensis, Thalassiosira rotula and the Antarctic diatom Odontella weissfloggii from the Weddell Sea. Algae were grown in an artifical sea-water medium under controlled laboratory conditions: light/dark regime of 12:12 h (7.2 W m?2), normal air (0.035 vol.% CO2) and 18° or 4 °C. All the tested diatom species can produce heat shock proteins (HSPS) of the 70 kDa family by in vivo labelling with [35S]-methionine. The same results were obtained for Odontella sinensis, Ditylum brightwellii and Odontella weissflogii by estimation of the in vitro translation products with poly-A-mRNA isolated from these organisms. However, Odontella weissflogii, a species relatively insensitive to UV-B irradiance, did not synthesize UV-induced HSPS, whereas the UV-sensitive diatom Odontella sinensis, as well as Lithodesmium variabile, produced all the observed HSPS after UV-B exposure. In addition, a protein of 43 kDa was found after UV-B irradiance of the temperate Odontella sinensis. The temperate marine diatom Thalassiosira rotula synthesized 70 kDa and 5 7 kDa proteins after a heat shock and a UV-B exposure of 2 h, but a 40 kDa protein could not be detected, whereas a 60 kDa protein was found after 2 h UV-B exposure. The results are discussed in view of a possible adaptation of O. weissflogii to an enhanced UV dose.  相似文献   

19.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

20.
Symbiodinium californium (#383, Banaszak et al. 1993 ) is one of two known dinoflagellate symbionts of the intertidal sea anemones Anthopleura elegantissima, A. xanthogrammica, and A. sola and occurs only in hosts at southern latitudes of the North Pacific. To investigate if temperature restricts the latitudinal distribution of S. californium, growth and photosynthesis at a range of temperatures (5°C–30°C) were determined for cultured symbionts. Mean specific growth rates were the highest between 15°C and 28°C (μ 0.21–0.26 · d?1) and extremely low at 5, 10, and 30°C (0.02–0.03 · d?1). Average doubling times ranged from 2.7 d (20°C) to 33 d (5, 10, and 30°C). Cells cultured at 10°C had the greatest cell volume (821 μm3) and the highest percentage of motile cells (64.5%). Growth and photosynthesis were uncoupled; light‐saturated maximum photosynthesis (Pmax) increased from 2.9 pg C · cell?1 · h?1 at 20°C to 13.2 pg C · cell?1 · h?1 at 30°C, a 4.5‐fold increase. Less than 11% of daily photosynthetically fixed carbon was utilized for growth at 5, 10, and 30°C, indicating the potential for high carbon translocation at these temperatures. Low temperature effects on growth rate, and not on photosynthesis and cell morphology, may restrict the distribution of S. californium to southern populations of its host anemones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号