首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The green shore crab, Carcinus maenas, undergoes on average 6?h periods of emersion during each low-tide cycle during the summer months. Under those conditions, the crab is cut off from its normal water environment and is exposed to potential stress from a suite of environmental and physiological changes: dehydration, compromised gas exchange and resultant internal hypoxia and hypercapnia, thermal stress, and ammonia toxicity. This study examined the comprehensive responses of the green crab in water and to a 6?h emersion period laboratory simulation of a tidal cycle followed by a 1?h re-immersion period, measuring indicators of dehydration, hemolymph osmolality, oxygen uptake, hemolymph acid–base status, heart and ventilatory rate, and hemolymph ammonia and ammonia excretion. Green crabs showed physiological responses of varying magnitude to 6?h of emersion. Individuals were found in the field exclusively under rocks and large clumps of seaweed where temperatures were approximately half those of exposed surfaces and relative humidity was about twice as high as ambient air. During emersion, crabs lost less than 5% of their wet weight, and hemolymph osmolality did not increase significantly. Oxygen uptake continued in air at about 50% of the control, aquatic values; and the gills continued to be ventilated by the scaphognathite, albeit at lower rates. Hemolymph lactate concentrations increased, indicating a shift to a greater reliance on anaerobic metabolism to support energetic needs. A slight acidosis developed in the hemolymph after 1?h of emersion, but it did not increase thereafter. Ammonia concentrations in the hemolymph were unchanged, as ammonia was volatilized by the gills and excreted into the air as NH3 gas. These results show that the green crab copes with emersion by seeking refuge in microhabitats that mitigate the changes in the physical parameters of intertidal emersion. Physiologically, desiccation is avoided, cardio-respiratory processes are maintained at reduced levels, and hemolymph acid–base balance is minimally affected. Ammonia toxicity appears to be avoided by a shift to excreting NH3 gas directly or indirectly to air.  相似文献   

2.
Juvenile shore crabs Carcinus maenas (L.) were observed feeding on rock barnacles Semibalanus balanoides (L.) on a Bay of Fundy rocky shore. This previously unreported predatory behaviour was further investigated in the laboratory. When given a choice of three common and abundant gastropods, Nucella lapillus (L.), Littorina littorea (L.), and Littorina obtusata (L.), and the rock barnacle Semibalanus balanoides, juvenile shore crabs of both sexes ate mainly barnacles and consumed proportionately more barnacles than gastropods compared with adults, which ate mainly gastropods. The rock barnacle is an abundant and readily available food source which may be important in sustaining the juvenile crab through periods of moults and rapid growth. As the shore crab attains a certain age (size), it must forage lower on the shore as gastropods become more important in its diet.  相似文献   

3.
The effects of lethal mercury concentrations on regulation of hemolymph electrolytes in the shore crab Carcinus maenas were investigated. In most experiments mercury exposure reduced hemolymph osmolality and Na+, Cl- and K+ levels to 55-90% of controls in 48 hr. Mercury exposure augmented calcium levels to 120-300% of controls. The effect of mercury on all of the electrolytes varied during the year, especially on magnesium levels which showed significant increases or decreases, or remained unaffected in different experiments.  相似文献   

4.
A large sample ofadult male Carcinus maenas was 79% right-handed and 21% left-handed. A separate sample of 207 intact adult males was divided into left-handed and right-handed crabs and four measurements were taken from all major and minor chelae. Correlation and regression analyses against carapace width on log-transformed data showed that major chelae of right-handed crabs grow proportionately higher with increasing size and the ideal mechanical advantage increases; concurrently, the fingers of the minor chelae grow proportionately longer. The data for left-handed crabs showed greater variability, especially for minor chelae, providing evidence for the concept that left-handedness arises by reversal of handedness following loss of the major chela from the right-hand side. Records of handedness in large samples of non-ocypodid heterochelous brachyuran crabs show a preponderance of right-handedness.  相似文献   

5.
Carcinus maenas (Decapoda: Portunidae) has proven a highly successful invasive marine species whose potential economic and ecological impacts are of great concern worldwide. Here, we characterize 14 polymorphic microsatellite loci in C. maenas and its sister species Carcinus aestuarii. These markers will prove useful for fine‐scale genetic analyses of native and introduced populations, for assessment of the sources and routes of invasion and for evaluation of post‐invasion population dynamics.  相似文献   

6.
This paper proposes a system of integro-difference equations to model the spread of Carcinus maenas, commonly called the European green crab, that causes severe damage to coastal ecosystems. A model with juvenile and adult classes is first studied. Here, standard theory of monotone operators for integro-difference equations can be applied and yields explicit formulas for the asymptotic spreading speeds of the juvenile and adult crabs. A second model including an infected class is considered by introducing a castrating parasite Sacculina carcini as a biological control agent. The dynamics are complicated and simulations reveal the occurrence of periodic solutions and stacked fronts. In this case, only conjectures can be made for the asymptotic spreading speeds because of the lack of mathematical theory for non-monotone operators. This paper also emphasizes the need for mathematical studies of non-monotone operators in heterogeneous environments and the existence of stacked front solutions in biological invasion models.  相似文献   

7.
F Lachaise  R Lafont 《Steroids》1984,43(3):243-259
Ponasterone A (25-deoxy-20-hydroxyecdysone) and 20-hydroxyecdysone were the major ecdysteroids detected in crab hemolymph, although some ecdysone was also present. The metabolism of ponasterone A was examined in intermolt and premolt crabs either by injecting the radiolabeled hormone or by incubating tissues in its presence. Metabolites were extracted from the surrounding seawater and from tissues and separated by high-performance liquid chromatography. Ponasterone A metabolism proceeds through (1) C-25 and C-26 hydroxylation, followed by formation of inactivation products via oxidation of the terminal alcoholic group to a carboxylic residue, (2) conjugation, (3) "binding" to very polar compounds and (4) side-chain scission. The conversion of ponasterone A into 20-hydroxyecdysone, inokosterone (25-deoxy-20, 26-dihydroxyecdysone), 20, 26-dihydroxyecdysone and ecdysonoic acids, as well as the formation of conjugates and of very polar compounds, occurs in various tissues. These metabolites were excreted by both intermolt and premolt crabs.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Most hemoglobins serve for the transport or storage of O(2). Although hemoglobins are widespread in "entomostracan" Crustacea, malacostracans harbor the copper-containing hemocyanin in their hemolymph. Usually, only one type of respiratory protein occurs within a single species. Here, we report the identification of a hemoglobin of the shore crab Carcinus maenas (Malacostraca, Brachyura). In contrast to the dodecameric hemocyanin of this species, C. maenas hemoglobin does not reside in the hemolymph but is restricted to the gills. Immunofluorescence studies and cell fractioning showed that C. maenas hemoglobin resides in the membrane of the chief cells of the gill. To the best of our knowledge, this is the first time that a membrane-bound hemoglobin has been identified in eukaryotes. Bioinformatic evaluation suggests that C. maenas hemoglobin is anchored in the membrane by N-myristoylation. Recombinant C. maenas hemoglobin has a hexacoordinate binding scheme at the Fe(2+) and an oxygen affinity of P(50) = 0.5 Torr. A rapid autoxidation rate precludes a function as oxygen carrier. We rather speculate that, analogous to prokaryotic membrane-globins, C. maenas hemoglobin carries out enzymatic functions to protect the lipids in cell membrane from reactive oxygen species. Sequence comparisons and phylogenetic studies suggested that the ancestral arthropod hemoglobin was most likely an N-myristoylated protein that did not have an O(2) supply function. True respiratory hemoglobins of arthropods, however, evolved independently in chironomid midges and branchiopod crustaceans.  相似文献   

16.
The euryhaline green crab, Carcinus maenas, is a relatively strong osmotic and ionic regulator, being able to maintain its hemolymph osmolality as much as 300 mOsm higher than that in the medium when the crab is acclimated to low salinity. It makes the transition from osmoconformity to osmoregulation at a critical salinity of 26 ppt, and new acclimated concentrations of hemolymph osmotic and ionic constituents are reached within 12 h after transfer to low salinity. One of the central features of this transition is an 8-fold induction of the enzyme carbonic anhydrase (CA) in the gills. This induction occurs primarily in the cytoplasmic pool of CA in the posterior, ion-transporting gills, although the membrane-associated fraction of CA also shows some induction in response to low salinity. Inhibition of branchial CA activity with acetazolamide (Az) has no effect in crabs acclimated to 32 ppt but causes a depression in hemolymph osmotic and ionic concentrations in crabs acclimated to 10 ppt. The salinity-sensitive nature of the cytoplasmic CA pool and the sensitivity of hemolymph osmotic/ionic regulation to Az confirm the enzyme's role in ion transport and regulation in this species. CA induction is a result of gene activation, as evidenced by an increase in CA mRNA at 24 h after transfer to low salinity and an increase in protein-specific CA activity immediately following at 48 h post-transfer. CA gene expression appears to be under inhibitory control by an as-yet unidentified repressor substance found in the major endocrine complex of the crab, the eyestalk.  相似文献   

17.
  • 1.1. The cardiovascular physiology of adult Carcinus maenas (L.) emerging into air has been investigated at three different air temperatures.
  • 2.2. Transition from seawater to air or vice versa triggered transient increases in cardiac and locomotor activity.
  • 3.3. However, crabs became inactive 5–10 min after emerging from seawater (15°C) into air at the same temperature (15°C) or at lower temperatures (12–13°C) and heart rate fell.
  • 4.4. At higher air temperatures (18–20°C) heart rate rose but to a lesser extent than predicted from aquatic Q10 heart-rate values.
  • 5.5. Crabs were again quiescent in aerial conditions.
  • 6.6. Mean arterial oxygen tension (Pao2) was ~ 74 mmHg in submerged crabs but fell to ~ 38 mmHg in air while mean arterial carbon dioxide tension (Pao2) increased from 1 to 4 mmHg resulting in respiratory acidosis.
  • 7.7. A model of gill function is proposed to explain the development of internal hypoxia in air.
  • 8.8. The results are discussed in relation to the distribution of adult and juvenile C. maenas in situ.
  相似文献   

18.
The European shore crab, Carcinus maenas, is one of the most successful marine invasive species. Its success has been in part attributed to the loss of parasites, rekindling an interest in host-parasite interactions and impacts on host fitness in this crab. In the present study, we investigated C. maenas populations from Europe, South Africa and Australia for parasites, and assessed their impact on the fitness of male crabs. For the shore crab, testes weight along with success in mating competition is traded off against other life-history traits. We therefore used this parameter as an indicator both for reproductive fitness and a possible resource trade-off in response to parasite infestation. In the native range, crabs infested with Sacculina carcini showed significantly lower testes weight than uninfected crabs. However, helminth parasites did not generally cause reduced testes weights. Crab populations from South Africa and Australia were either parasitized at very low prevalences, or were completely parasite free. However, no population level effect of this parasite release was reflected in testes weight. These findings do not support a severe fitness impact of helminth parasites on C. maenas, which questions the role of parasites on its population dynamics, both in the native area and for invasive success.  相似文献   

19.
Summary The phyllobranchiate gills of the green shore crab Carcinus maenas have been examined histologically and ultrastructurally. Each gill lamella is bounded by a chitinous cuticle. The apical surface of the branchial epithelium contacts this cuticle, and a basal lamina segregates the epithelium from an intralamellar hemocoel. In animals acclimated to normal sea water, five epithelial cell types can be identified in the lamellae of the posterior gills: chief cells, striated cells, pillar cells, nephrocytes, and glycocytes. Chief cells are the predominant cells in the branchial epithelium. They are squamous or low cuboidal and likely play a role in respiration. Striated cells, which are probably involved in ionoregulation, are also squamous or low cuboidal. Basal folds of the striated cells contain mitochondria and interdigitate with the bodies and processes of adjacent cells. Pillar cells span the hemocoel to link the proximal and distal sides of a lamella. Nephrocytes are large, spherical cells with voluminous vacuoles. They are rimmed by foot processes or pedicels and frequently associate with the pillar cells. Glycocytes are pleomorphic cells packed with glycogen granules and multigranular rosettes. The glycocytes often mingle with the nephrocytes. Inclusion of the nephrocytes and glycocytes as members of the branchial epithelium is justified by their participation in intercellular junctions and their position internal to the epithelial basal lamina.  相似文献   

20.
After acclimation, Carcinus can maintain calcium balance in dilute (35-100%) but not in low calcium sea water. 71% of total haemolymph calcium (9-54 +/- 0-42 mM) was in ionic form as compared with 90-9%(9-9mM) in sea water. On acclimation to dilute sea water the calcium activity of the haemolymph was greater than that of the medium, the difference being maintained by active calcium uptake. Carcinus is highly permeable to Ca2+, influx from sea water being 0-513 +/- 0-07 mumoles g-1 h-1 and the time constant for calcium influx 4-3 +/- 0-48 h. Calcium space represented ca. 25% wet body weight independent of body size or salinity of acclimation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号