首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human remains excavated from Vindija cave include a large although fragmentary sample of late Mousterian-associated specimens and a few additional individuals from the overlying early Upper Paleolithic levels. The Mousterian-associated sample is similar to European Neandertals from other regions. Compared with earlier Neandertals from south central Europe, this sample evinces evolutionary trends in the direction of Upper Paleolithic Europeans. Compared with the western European Neandertals, the same trends can be demonstrated, although the magnitude of difference is less, and there is a potential for confusing temporal with regional sources of variation. The early Upper Paleolithic-associated sample cannot be distinguished from the Mousterian-associated hominids. We believe that this site provides support for Hrdli?ka's “Neandertal phase” of human evolution, as it was originally applied in Europe.  相似文献   

2.
The human frontal bone from Sal'a, Slovak Republic, has previously entered into discussions of the morphological patterns of Central European Neandertals and the origins of early modern humans in that region. A morphological reassessment of its supraorbital region and a morphometric analysis of its overall proportions indicate that it falls well within expected ranges of variation of Late Pleistocene Neandertals and is separate from European earlier Upper Paleolithic early modern human crania. It is similar to the Qafzeh-Skhul sample in some metrical and supraorbital robusticity measures, but it contrasts with them in mid-sagittal curvature and supraorbital torus morphology. In the context of its probable oxygen isotope stage 5 age based on inferred biostratigraphic associations, it should not be employed directly for arguments relating to the emergence of modern humans in Central Europe.  相似文献   

3.
Reexamination of the immature Upper Pleistocene hominid maxilla from Mugharet el-'Aliya (Tangier), Morocco is undertaken in light of new evidence on the growth and development of Upper Pleistocene hominids. Metric and qualitative comparisons were made with 17 immature Upper Pleistocene maxillae, and with a recent Homo sapiens sapiens sample. No unambiguous criteria for aligning the maxilla with Neandertals were found, although one character, the degree of maxillary flexion on the zygoma, strongly suggests that this child could be a representative of H. s. sapiens. The probable lack of a canine fossa in Mugharet el-'Aliya 1, the primary criterion used previously to align it with Neandertals, cannot be accurately extrapolated to its adult form from this juvenile. The present evidence suggests that it is inappropriate to refer to this fossil as “Neandertal-like” or as a North African “neandertaloid.” Thus, the Tangier maxilla should not be cited as evidence for the presence of Neandertal facial features in North Africa during the Upper Pleistocene. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The human frontal bone from al’a, Slovak Republic, has previously entered into discussions of the morphological patterns of Central European Neandertals and the origins of early modern humans in that region. A morphological reassessment of its supraorbital region and a morphometric analysis of its overall proportions indicate that it falls well within expected ranges of variation of Late Pleistocene Neandertals and is separate from European earlier Upper Paleolithic early modern human crania. It is similar to the Qafzeh-Skhul sample in some metrical and supraorbital robusticity measures, but it contrasts with them in mid-sagittal curvature and supraorbital torus morphology. In the context of its probable oxygen isotope stage 5 age based on inferred biostratigraphic associations, it should not be employed directly for arguments relating to the emergence of modern humans in Central Europe.  相似文献   

5.
Human remains associated with the earliest Upper Paleolithic industries are sparse. What is preserved is often fragmentary, making it difficult to accurately assign them to a particular species. For some time it has been generally accepted that Neandertals were responsible for the Chatelperronian and anatomically modern humans for the early Aurignacian industries. However, the recent re-dating of several of the more-complete modern human fossils associated with the early Aurignacian (e.g., Vogelherd) has led some to question the identity of the makers and the context of these early Upper Paleolithic industries. The Grotte du Renne at Arcy-sur-Cure, France has yielded many hominin remains, from Mousterian, Chatelperronian, Aurignacian, and Gravettian layers. Previously, a child's temporal bone from the Chatelperronian Layer Xb was recognized as belonging to a Neandertal; however, most of the teeth from Chatelperronian layers VIII-X remain unpublished. We describe the dental remains from the Chatelperronian layers, place them in a comparative (Mousterian Neandertal and Upper Paleolithic modern human) context, and evaluate their taxonomic status. The teeth (n = 29) represent a minimum of six individuals aged from birth to adult. The permanent dental sample (n = 15) from the Chatelperronian layers of Arcy-sur-Cure exhibits traits (e.g., lower molar mid-trigonid crest) that occur more frequently in Neandertals than in Upper Paleolithic modern humans. Furthermore, several teeth show trait combinations, including Cusp 6/mid-trigonid crest/anterior fovea in the lower second molar, that are rare or absent in Upper Paleolithic modern humans. The deciduous teeth (n = 14) significantly increase the sample of known deciduous hominin teeth and are more similar to Mousterian Neandertals from Europe and Asia than to Upper Paleolithic modern humans. Thus, the preponderance of dental evidence from the Grotte du Renne strongly supports that Neandertals were responsible for the Chatelperronian industry at Arcy-sur-Cure.  相似文献   

6.
The appearance of anatomically modern Homo sapiens in Europe, the Near East, and Africa must represent either an in situ evolution of Neandertals or a migration. Those who suggest the latter claim a sudden replacement of Neandertals by anatomically modern Homo sapiens. However, the "evidence" actually cited claims only the sudden replacement of Middle by Upper Paleolithic industries. We criticize the migration explanation on two grounds. (1) There is no "sudden replacement" of Middle Paleolithic by Upper Paleolithic industries, but rather a gradual change in the frequencies of already present tools. Numerous sites in these areas exhibit transitional industries. (2) Concomitantly, there is no morphological evidence indicating a "sudden replacement" of hominids. There is no absolute association between anatomically modern Homo sapiens and Upper Paleolithic industries. Instead, the evidence clearly shows that early anatomically modern Homo sapiens is a late Middle Paleolithic local phenomenon .  相似文献   

7.
8.
In Eurasia, the period between 40,000 and 30,000 BP saw the replacement of Neandertals by anatomically modern humans (AMH) during and after the Middle to Upper Paleolithic transition. The human fossil record for this period is very poorly defined with no overlap between Neandertals and AMH on the basis of direct dates. Four new 14C dates were obtained on the two adult Neandertals from Spy (Belgium). The results show that Neandertals survived to at least ≈36,000 BP in Belgium and that the Spy fossils may be associated to the Lincombian–Ranisian–Jerzmanowician, a transitional techno‐complex defined in northwest Europe and recognized in the Spy collections. The new data suggest that hypotheses other than Neandertal acculturation by AMH may be considered in this part of Europe. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
The site of Klasies River Mouth (KRM) in South Africa has produced a small sample of early Upper Pleistocene hominid remains that have been a focus for discussions of the origins of modern humans. Despite certain primitive characteristics exhibited by these fossils, proponents of a single recent origin have attributed them to early modern humans. Critics of this hypothesis have emphasized the significance of the archaic features evident in this sample, including the absence of pronounced chins among the mandibular specimens. This study compares the size range and chin morphology exhibited by the KRM mandibles with that of Neandertals, Upper Pleistocene humans, and recent humans. The extreme sexual dimorphism documented among the KRM fossils reflects the presence of a very small individual, and previous efforts to classify the KRM sample as archaic on the basis of their robusticity have failed to address the significance of this diminutive hominid. While each KRM fossil falls within the 95% envelope of variability established for chin development in a comparative modern sample, a similarly low frequency of pronounced chins is very unlikely to be found in any recent human population. The morphological pattern of the KRM mandibles is clearly distinct from that of Neandertals and of recent humans. © 1996 Wiley-Liss, Inc.  相似文献   

10.
With the shift during the 1980s from a human-great ape ultimately to an orangutan-(gorilla-(human-chimp)) theory of relatedness, the search for chimpanzee-like features in early hominids intensified. Reconstructions of early hominids became caricatures of chimpanzees, not only in soft tissue features (e.g. the nasal region), but in supposed bony structures (e.g. an anteriorly and especially superiorly protruding a supraorbital torus with a distinct posttoral sulcus behind). In spite of rampant >Panophilia,< actual morphologies of the majority of early hominid specimens are those cited as uniting an orangutan clade. Those specimens that are >chimpanzee-like< are probably not cladistically hominid.  相似文献   

11.
12.
The Aurignacian is typically taken as a marker of the spread of anatomically modern humans into Europe. However, human remains associated with this industry are frustratingly sparse and often limited to teeth. Some have suggested that Neandertals may, in fact, be responsible for the Aurignacian and the earliest Upper Paleolithic industries. Although dental remains are frequently considered to be taxonomically undiagnostic in this context, recent research shows that Neandertals possess a distinct dental pattern relative to anatomically modern humans. Even so, it is rare to find mandibles or maxillae that preserve all or most of their teeth; and, the probability of correctly identifying individuals represented by only a few teeth or a single tooth is unknown. We present a Bayesian statistical approach to classifying individuals represented exclusively by teeth into two possible groups. The classification is based on dental trait frequencies and sample sizes for ‘known’ samples of 95 Neandertals and 63 Upper Paleolithic modern humans. In a cross validation test of the known samples, 89% of the Neandertals and 89% of the Upper Paleolithic modern humans were classified correctly. We then classified an ‘unknown’ sample of 52 individuals: 34 associated with Aurignacian or other (non-Châtelperronian) early Upper Paleolithic industries, 15 associated with the Châtelperronian, and three unassociated. Of the 34 early Upper Paleolithic-associated individuals, 29 were assigned to modern humans, which is well within the range expected (95% of the time 26-33) with an 11% misclassification rate for an entirely modern human sample. These results provide some of the strongest evidence that anatomically modern humans made the Aurignacian and other (non-Châtelperronian) early Upper Paleolithic industries.  相似文献   

13.
Increased longevity, expressed as the number of individuals surviving to older adulthood, represents a key way that Upper Paleolithic Europeans differ from earlier European (Neandertal) populations. Here, we address whether longevity increased as a result of cultural/adaptive change in Upper Paleolithic Europe, or whether it was introduced to Europe as a part of modern human biology. We compare the ratio of older to younger adults (OY ratio) in an early modern human sample associated with the Middle Paleolithic from Western Asia with OY ratios of European Upper Paleolithic moderns and penecontemporary Neandertals from the same region. We also compare these Neandertals to European Neandertals. The difference between the OY ratios of modern humans of the Middle and Upper Paleolithic is large and significant, but there is no significant difference between the Neandertals and early modern humans of Western Asia. Longevity for the West Asian Neandertals is significantly more common than for the European Neandertals. We conclude that the increase in adult survivorship associated with the Upper Paleolithic is not a biological attribute of modern humans, but reflects important cultural adaptations promoting the demographic and material representations of modernity.  相似文献   

14.
The early Upper Paleolithic of Europe is associated with the appearance of blade/bladelet technology (e.g., Aurignacian). These industries include a wider range of formal tool types than seen in the Middle Paleolithic. Greater diversity in tool types is often interpreted as specialized tools created for specific tasks. This, in turn, is said to reflect dramatic behavioral shifts between Neandertals and modern humans. In order to test previous interpretations, it is necessary to have a detailed understanding of early Upper Paleolithic stone-tool function. Toward this end, analyses of microscopic residue and use-wear were undertaken on 109 stone tools from three Aurignacian sites in southwest Germany (Hohle Fels, Geissenkl?sterle, and Vogelherd). These cave sites evidenced remarkable residue preservation, with approximately 82% of the sample showing some form of functional evidence. Residues observed included hair, feathers, bone/antler, wood, plant tissue, phytoliths, starch grains, and resin. The results suggest that tool typology is not strongly linked to the processing of specific materials. For example, endscrapers from the sample show evidence of processing wood, charred wood, plants, starchy plants, birds, bone/antler, and animals (hair). Hairs are found on tools typologically classified as blades, flakes, borers, pointed blades, and combination tools (nosed endscraper-borer, burin-laterally-retouched blade). In the early Upper Paleolithic of southwest Germany, a wide range of tool types appears to have been used to process a diverse array of materials. These results suggest that the interpretation of behavioral patterns from stone tools must consider more than tool typology.  相似文献   

15.
In this article we study the cranial remains of the late Lower Pleistocene human fossils from Gran Dolina (Sierra de Atapuerca, Spain), assigned to the new species Homo antecessor. The cranial remains belong to at least five individuals, both juveniles and adults. The most outstanding feature is the totally modern human morphology of the very complete face ATD6-69, representing the earliest occurrence of the modern face in the fossil record. The Gran Dolina fossils show in the face a suite of modern human apomorphies not found in earlier hominids nor in contemporary or earlier Homo erectus fossils. There are also traits in the Gran Dolina fossils shared with both Neandertals and modern humans, which reinforce the hypothesis that Neandertals and modern humans form a clade, and that the Gran Dolina fossils are a common ancestor to both lineages.  相似文献   

16.
Neandertals, the archaic human form documented in Eurasia until 29,000 years ago, share no mitochondrial haplotype with modern Europeans. Whether this means that the two groups were reproductively isolated is controversial, and indeed nuclear data have been interpreted as suggesting that they admixed. We explored the range of demographic parameters that may have generated the observed mitochondrial diversity, simulating 3.0 million genealogies under six models differing as for the relationships among contemporary Europeans, Neandertals, and Upper Palaeolithic European early modern humans (EEMH), who coexisted with Neandertals for millennia. We compared by Approximate Bayesian Computations the simulation results with mitochondrial diversity in 7 Neandertals, 3 EEMH, and 150 opportunely chosen modern Europeans. A model of genealogical continuity between EEMH and contemporary Europeans, with no Neandertal contribution, received overwhelming support from the analyses. The maximum degree of Neandertal admixture, under the model of gene flow supported by nuclear data, was estimated at 1.5%, but this model proved 20-32 times less likely than a model without any gene flow. Nuclear and mitochondrial evidence might be reconciled if smaller population sizes led to faster lineage sorting for mitochondrial DNA, and Neandertals shared a longer period of common ancestry with the non-African's than with the African's ancestors.  相似文献   

17.
When in evolutionary history did long-range projectile weapons become an important component of hunting toolkits? The archeological evidence for the development of projectile weaponry is complex and generally indirect, and has led to different conclusions about the origin and spread of this technology. Lithic evidence from the Middle Stone Age (MSA) has led some researchers to suggest that true long- range projectile weaponry developed in Africa perhaps as early as 80,000 years ago, and was part of the subsistence toolkit carried by modern humans who expanded out of Africa after 50,000 years ago. Alternatively, temporal patterns in the morphology of pointed lithics has led others to posit an independent, convergent origin of projectile weaponry in Africa, the Near East, and Europe during the interval between 50,000-40,000 years ago. By either scenario, projectile weapons would not have been a component of the hunting arsenal of Neandertals, but may have been in use by European early modern humans and thus, projectile technology may have entered into the competitive dynamics that existed between these two groups. The origins of projectile weapons can be addressed, in part, through analyses of the skeletal remains of the prehistoric humans who made and used them. Habitual behavior patterns—including those related to the production and use of technology—can be imprinted on the skeleton through both genetic and epigenetic pathways. Recent studies in the field of sports medicine indicate that individuals who engage in habitual throwing have increased humeral retroversion angles in their throwing arms and a greater degree of bilateral asymmetry in retroversion angles than do non-throwers. This contribution investigates humeral torsion through analysis of the retroversion angle in samples of Eurasian Neandertals, European early modern humans of the middle and late Upper Paleolithic, and comparative samples of recent humans. This analysis was conducted under the assumption that if throwing-based projectile weaponry was used by early modern Europeans but not Neandertals, Upper Paleolithic samples should be similar to recent human groups engaged in habitual throwing in the degree of humeral retroversion in the dominant limb and in bilateral asymmetry in this feature. Neandertals on the other hand, would not be expected to show marked asymmetry in humeral retroversion. Consistent with other studies, Neandertals exhibit increased retroversion angles (decreased humeral torsion or a more posteriorly oriented humeral head) relative to most modern human samples, although this appears more likely related to body form and overall activity levels than to habitual throwing. Although Neandertals with bilaterally preserved humeri sufficient for measurement are rare (consisting of only two males and one female), levels of bilateral asymmetry in humeral retroversion are low, suggesting a lack of regular throwing. While patterning across fossil and comparative samples in levels of humeral retroversion was not clear cut, males of both the middle and late Upper Paleolithic demonstrate a high level of bilateral asymmetry, comparable to or in excess of that seen in samples of throwing athletes. This may indicate habitual use of throwing-based projectile weaponry by middle Upper Paleolithic times. Small sample sizes and relatively great variance in the fossil samples makes these results, however, suggestive rather than conclusive.  相似文献   

18.
The juvenile A Skull from Krapina, Croatia (Krapina 1) has been the subject of considerable debate since B. Skerlj first suggested that it might not be a Neandertal. Although widely known by its original designation, the Krapina A Skull was recatalogued, along with all of the Krapina hominids, in the 1980's (Radovcic, et al., [1988]. The Krapina Hominids: An Illustrated Catalog of Skeletal Collection. Zagreb; Mladost). It is now catalogued as Krapina 1 in the archives of the Hrvatski Prirodoslovni Muzej, Zagreb, Croatia. We present a detailed, morphometric analysis of this specimen, comparing it to other Krapina specimens, juvenile late Pleistocene hominids (including Neandertals), and subadult recent humans. This analysis demonstrates that Krapina 1 possesses morphological features that are primitive retentions; others that represent derived Neandertal specializations; and still others that are typical for all European late Pleistocene humans. Morphological features associated with the browridges are intermediate between Neandertal and early modern European form. Nevertheless, a thorough analysis of the morphology of this specimen, in ontogenetic and regional contexts, leads to the conclusion that it cannot be excluded from the Neandertal range of variation. We conclude that the most parsimonious explanation for this 130 ka specimen is that it should be regarded as a Neandertal.  相似文献   

19.
Implicit in much of the discussion of the cultural and population biological dynamics of modern human origins in Europe is the assumption that the Aurignacian, from its very start, was made by fully modern humans. The veracity of this assumption has been challenged in recent years by the association of Neandertal skeletal remains with a possibly Aurignacian assemblage at Vindija Cave (Croatia) and the association of Neandertals with distinctly Upper Paleolithic (but non-Aurignacian) assemblages at Arcy-sur-Cure and St. C?esaire (France). Ideally we need human fossil material that can be confidently assigned to the early Aurignacian to resolve this issue, yet in reality there is a paucity of well-provenanced human fossils from early Upper Paleolithic contexts. One specimen, a right humerus from the site of Vogelherd (Germany), has been argued, based on its size, robusticity, and muscularity, to possibly represent a Neandertal in an Aurignacian context. The morphological affinities of the Vogelherd humerus were explored by univariate and multivariate comparisons of humeral epiphyseal and diaphyseal shape and strength measures relative to humeri of Neandertals and Early Upper Paleolithic (later Aurignacian and Gravettian) modern humans. On the basis of diaphyseal cross-sectional geometry, deltoid tuberosity morphology, and distal epiphyseal morphology, the specimen falls clearly and consistently with European early modern humans and not with Neandertals. Along with the other Vogelherd human remains, the Vogelherd humerus represents an unequivocal association between the Aurignacian and modern human morphology in Europe.  相似文献   

20.
Bi CL  Guo GY  Zhang X  Tian YH  Shen YZ 《遗传》2012,34(6):659-665
尼安德特人是现代人最近的旁支,也是化石资料最丰富的古人类。在现代人起源问题的争论中,尼安德特人对现代人是否有遗传贡献是一个焦点问题。文章综述了近年来关于尼安德特人线粒体基因组和核基因组的研究进展,初步研究表明尼安德特人可能对现代人有遗传贡献,这引发了人们对现代人起源问题的重新思考。藉尼人基因组研究经验进行的古人类基因组学研究将有望揭开现代人起源的谜团,并丰富进化生物学相关领域的理论体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号