首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of the bacterial serine protease from Streptomyces griseus (SGPA) has been refined at 1.8 Å resolution by a restrained parameter least-squares procedure (Konnert, 1976) to a conventional R factor of 0.139 for 12662 statistically significant reflections [I > 3σ(I)]. The number of variable parameters in the final model was 5912 which included positional and individual thermal parameters of the enzyme, and positions, B factors and occupancies of 175 solvent molecules. The algorithm used for this refinement allows for the simultaneous restraint on bond distances and distances related to interbond angles, the coplanarity of atoms in planar groups, the conservation of chirality of asymmetric centres, non-bonded contact distances, conformational torsional angles and individual isotropic temperature factors.The refined structure of SGPA differs from ideal bond lengths by an overall root-mean-square deviation of 0.02 Å; the corresponding value for angle distances is 0.038 Å. Comparison of the phase angles for the shell of data, 8.0 to 2.8 Å, between the multiple isomorphous replacement phases (Brayer et al., 1978a) and the refined phases, indicates an overall difference (r.m.s.) of 56.6 °. The average conformational angle of the peptide bond (ω) is 179.7 ° (root-mean-square deviation ± 2.5 °) for the 180 peptide bonds of SGPA. Of the 175 solvent molecules included during the course of the refinement, 22 with occupancies ranging from 1.00 to 0.38 are located in the active site and the substrate binding region. It was not until these water molecules were included in the refinement process that the active Ser195 adopted its final conformation (χ1 = ?77 °). The resulting distance from Oγ of Ser195 to Nε2 of His57 is 3.1 Å, which, when taken with the observed distortion from linearity (50 °), indicates a rather weak interaction.  相似文献   

2.
Monte Carlo simulations of peptide solvation   总被引:1,自引:0,他引:1  
To increase our understanding of peptide–water interactions, we are simulating the behavior of water molecules in the intermolecular channels of [Phe4Val6]antamanide dododecahydrate crystals. There is good overall agreement between the positions predicted using two alternative potential functions and those that have been observed by x-ray diffraction. Detailed differences between the predictions for the two potential functions are discussed.  相似文献   

3.
The crystal structure of the complex between adenylate kinase from bovine mitochondrial matrix and its substrate AMP has been refined at 1.85 A resolution (1 A = 0.1 nm). Based on 42,519 independent reflections of better than 10 A resolution, a final R-factor of 18.9% was obtained with a model obeying standard geometry within 0.016 A in bond lengths and 3.2 degrees in bond angles. There are two enzyme: substrate complexes in the asymmetric unit, each consisting of 226 amino acid residues, one AMP and one sulfate ion. A superposition of the two full-length polypeptides revealed deviations that can be described as small relative movements of three domains. Best superpositions of individual domains yielded a residual overall root-mean-square deviation of 0.3 A for the backbone atoms and 0.5 A for the sidechains. The final model contains 381 solvent molecules in the asymmetric unit, 2 x 72 = 144 of which occupy corresponding positions in both complexes.  相似文献   

4.
Monte Carlo simulations are reported for a system of 447 water molecules enclosing a B-DNA double-helix fragment with 12 base pairs and the corresponding sugar and phosphate units. From a detailed analysis on the interaction energies and probability distributions (at a simulated temperature of 300 K), the water molecules can be partitioned into clusters strongly interacting with (1) the phosphates, (2) the sugars, (3) the sugars and the bases, and (4) the base pairs. In addition, transgroove and interphosphate filament of hydrogen-bonded water molecules have been detected. From simulations performed with variable numbers of water molecules, a theoretical isotherm has been obtained, with the characteristic sigmoidal shape, known from absorption–desorption experiments on related systems. The expected main features for the structure of water molecules solvating B-DNA with Na+ counterions are briefly discussed at the end of the paper.  相似文献   

5.
The implications of protein-water interactions are of importance for understanding the solution behavior of proteins and for analyzing the fine structure of proteins in aqueous solution. Starting from the atomic coordinates, by bead modeling the scattering and hydrodynamic properties of proteins can be predicted reliably (Debye modeling, program HYDRO). By advanced modeling techniques the hydration can be taken into account appropriately: by some kind of rescaling procedures, by modeling a water shell, by iterative comparisons to experimental scattering curves (ab initio modeling) or by special hydration algorithms. In the latter case, the surface topography of proteins is visualized in terms of dot surface points, and the normal vectors to these points are used to construct starting points for placing water molecules in definite positions on the protein envelope. Bead modeling may then be used for shaping the individual atomic or amino acid residues and also for individual water molecules. Among the tuning parameters, the choice of the scaling factor for amino acid hydration and of the molecular volume of bound water turned out to be crucial. The number and position of bound water molecules created by our hydration modeling program HYDCRYST were compared with those derived from X-ray crystallography, and the capability to predict hydration, structural and hydrodynamic parameters (hydrated volume, radius of gyration, translational diffusion and sedimentation coefficients) was compared with the findings generated by the water-shell approach CRYSOL. If the atomic coordinates are unknown, ab initio modeling approaches based on experimental scattering curves can provide model structures for hydrodynamic predictions.  相似文献   

6.
Crystals of [Phe4 Val6] antamanide (cyclic [ValProProPhePhe]2) grown from dioxane/H2O, with space group P21212 and cell parameters a = 15.099(4), b = 22.008(5) and c = 11.024(3) A, are almost identical to crystals grown from H2O/acetone, the structure of which was determined a number of years ago. Per peptide molecule there are the equivalent of 12 water molecules occupying 16 sites in both crystals; however, in the new investigation a number of water molecules present at one-half occupancy have been found in different positions than in the earlier analysis. The interpretation of the hydrogen bonding between peptide/water and between water/water is much more satisfactory. Pentagonal water assemblies are present in the solvent channel. There is a distinct indication of the occurrence of a bifurcated bond between two water molecules, as well as the presence of three-center hydrogen bonds joining three water molecules. This may be the first experimental example of a bifurcated bond between two water molecules.  相似文献   

7.
Abstract

The extensive water network identified in the crystallographic studies of the dCpG/Proflavin hydrate by Neidle, Berman and Shieh (Nature 288, 129, 1980) forms an ideal test case for a) assessing the accuracy of theoretical calculations on nucleic acid—water systems based on statistical thermodynamic computer simulation, and b) the possible use of computer simulation in predicting the water positions in crystal hydrates for use in the further refinement and interpretation of diffraction data. Monte Carlo studies have been carried out on water molecules in the unit cell of dCpG/proflavin, with the nucleic acid complex fixed and the condensed phase environment of the system treated by means of periodic boundary conditions. Intermolecular interactions are described by potential functions representative of quantum mechanical calculations developed by Clementi and coworkers, and widely used in recent studies of the aqueous hydration of various forms of DNA fragments. The results are analyzed in terms of hydrogen bond topology, hydrogen bond distances and energies, mean water positions, and water crystal probability density maps. Detailed comparison of calculated and experimentally observed results are given, and the sensitivity of results to choice of potential is determined by comparison with simulation results based on a set of empirical potentials.  相似文献   

8.
The structure of a complex of rhizopuspepsin, a fungal aspartyl protease, with Pro1-Phe2-His3-Phe4-psi[CH2-NH]-Phe5-Val6, its substrate-like inhibitor, was calculated by theoretical conformational analysis. The search for energetically favorable conformational variants of the ligand structure was based on the fragmental approach using the dynamic library of peptide fragments, which were successively extended in the potential field of the protein. The root-mean-square deviation of atom positions in the calculated and experimental inhibitor conformations was 0.56 A. A similar approach was used to model a noncovalent complex of rhizopuspepsin with Pro1-Phe2-His3-Lys4-Phe5-Val6, its specific substrate. As a result, two isoenergetic structures of the complex with different arrangements of the cleavable peptide group and a nucleophilic water molecule were calculated. The possibility of the achieving each of these conformations during the catalytic act is considered. It is shown that there are no structural prerequisites for the distortion of the cleavable bond in the active site of the enzyme. On the basis of the resulting structural data, the assumption was made that Asp35 may be protonated at a late stage of formation of the tetrahedral intermediate rather than at the basic state of the complex.  相似文献   

9.
Both the ordered and disordered solvent networks of vitamin B12 coenzyme crystal hydrate have been generated by Monte Carlo simulation techniques. Several different potential functions have been use to model both water-water and water-solute (i.e., water-coenzyme) interactions. The results have been analysed in terms of the structural properties of the water networks, such as mean water oxygen and hydrogen positions, coordination of each water molecule, and maxima of probability density maps in all four asymmetric units of this crystal.The following results were found: (I) Within each asymmetric unit only one hydrogen bonding network was predicted although there were several hydrogen atom positions for any one solvent molecule (defined as maxima in probability density). (II) Reasonable agreement was obtained between predicted and experimental positions in the ordered solvent region, independent of the potential function used. (III) The positions of the calculated probability density maxima for the disordered channel region were different in different asymmetric units; this led to different simulated hydrogen bond networks which were not always consistent with the experimentally determined alternative (lower occupancy) sites.The results suggest that it is advisable to simulate more than one asymmetric unit if one wishes to look at disorder in the solvent regions. Probability density maps were qualitatively very useful for picturing these disordered regions. However, there were no significant differences between quantitative results predicted using either average atomic positions or maxima of the probability density distributions.Problems in quantifying agreement between experimental and predicted disordered solvent networks are discussed. The potential which included hydrogen atoms explicitly (EMPWI) seemed to give the best overall agreement, mainly because it was successful in predicting the unusually short hydrogen bonds which are found in this crystal.  相似文献   

10.
Earlier studies involving water-mediated transformations in lysozyme and ribonuclease A have shown that the overall movements in the protein molecule consequent to the reduction in the amount of surrounding water are similar to those that occur during enzyme action, thus highlighting the relationship among hydration, plasticity, and action of these enzymes. Monoclinic lysozyme retains its crystallinity even when the level of hydration is reduced further below that necessary for activity (about 0.2 gram of water per gram of protein). In order to gain insights into the role of water in the stability and the plasticity of the protein molecule and the geometrical basis for the loss of activity that accompanies dehydration, the crystal structures of monoclinic lysozyme with solvent contents of 17.6%, 16.9%, and 9.4% were determined and refined. A detailed comparison of these forms with the normally hydrated forms show that the C-terminal segment (residues 88–129) of domain I and the main loop (residues 65–73) in domain II exhibit large deviations in atomic positions when the solvent content is reduced, although the three-dimensional structure is essentially preserved. Many crucial water bridges between different regions of the molecule are conserved in spite of differences in detail, even when the level of hydration is reduced well below that required for activity. The loss of activity that accompany dehydration appears to be caused by the removal of functionally important water molecules from the active-site region and the reduction in the size of the substrate binding cleft. Proteins 32:229–240, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
A joint experimental/theoretical investigation of the elastin-like octapeptide GVG(VPGVG) was carried out. In this article a comprehensive molecular-dynamics study of the temperature-dependent folding and unfolding of the octapeptide is presented. The current study, as well as its experimental counterpart (see companion article in this issue) find that this peptide undergoes an inverse temperature transition (ITT), leading to a folding at approximately 40-60 degrees C. In addition, an unfolding transition is identified at unusually high temperatures approaching the normal boiling point of water. Due to the small size of the system, two broad temperature regimes are found: the ITT regime at approximately 10-60 degrees C and the unfolding regime at approximately T > 60 degrees C, where the peptide has a maximum probability of being folded at T approximately 60 degrees C. A detailed molecular picture involving a thermodynamic order parameter, or reaction coordinate, for this process is presented along with a time-correlation function analysis of the hydrogen-bond dynamics within the peptide as well as between the peptide and solvating water molecules. Correlation with experimental evidence and ramifications on the properties of elastin are discussed.  相似文献   

12.
The structure of 2Zn pig insulin crystals at 1.5 A resolution   总被引:25,自引:0,他引:25  
The paper describes the arrangement of the atoms within rhombohedral crystals of 2Zn pig insulin as seen in electron density maps calculated from X-ray data extending to 1.5 A (1 A = 10(-10) m = 10(-1) nm) at room temperature and refined to R = 0.153. The unit cell contains 2 zinc ions, 6 insulin molecules and about 3 x 283 water molecules. The atoms in the protein molecules appear well defined, 7 of the 102 side chains in the asymmetric unit have been assigned alternative disordered positions. The electron density over the water molecules has been interpreted in terms of 349 sites, 217 weighted 1.0, 126 weighted 0.5, 5 at 0.33 and 1 at 0.25 giving ca. 282 molecules. The positions and contacts of all the residues belonging to the two A and B chains of the asymmetric unit are shown first and then details of their arrangement in the two insulin molecules, 1 and 2, which are different. The formation from these molecules of a compact dimer and the further aggregation of three dimers to form a hexamer around two zinc ions, follows. It appears that in the packing of the hexamers in the crystal there are conflicting influences; too-close contacts between histidine B5 residues in neighbouring hexamers are probably responsible for movements of atoms at the beginning of the A chain of one of the two molecules of the dimer that initiate movements in other parts, particularly near the end of the B chain. At every stage of the building of the protein structure, residues to chains of definite conformation, molecules, dimers, hexamers and crystals, we can trace the effect of the packing of like groups to like, aliphatic groups together, aromatic groups together, hydrogen-bonded structures, positive and negative ions. Between the protein molecules, the water is distributed in cavities and channels that are continuous throughout the crystals. More than half the water molecules appear directly hydrogen bonded to protein atoms. These are generally in contact with other water molecules in chains and rings of increasing disorder, corresponding with their movement through the crystals. Within the established crystal structure we survey next the distribution of hydrogen bonds within the protein molecules and between water and protein and water and water; all but eight of the active atoms in the protein form at least one hydrogen bond.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Crystal structure of uncleaved ovalbumin at 1.95 A resolution   总被引:6,自引:0,他引:6  
Ovalbumin, the major protein in avian egg-white, is a non-inhibitory member of the serine protease inhibitor (serpin) superfamily. The crystal structure of uncleaved, hen ovalbumin was solved by the molecular replacement method using the structure of plakalbumin, a proteolytically cleaved form of ovalbumin, as a starting model. The final refined model, including four ovalbumin molecules, 678 water molecules and a single metal ion, has a crystallographic R-factor of 17.4% for all reflections between 6.0 and 1.95 A resolution. The root-mean-square deviation from ideal values in bond lengths is 0.02 A and in bond angles is 2.9 degrees. This is the first crystal structure of a member of the serpin family in an uncleaved form. Surprisingly, the peptide that is homologous to the reactive centre of inhibitory serpins adopts an alpha-helical conformation. The implications for the mechanism of inhibition of the inhibitory members of the family is discussed.  相似文献   

14.
15.
1. The size and shape of superhelical double-stranded circular DNA from bacteriophage ØX174 were investigated by light-scattering. The molecular weight of the DNA is 3.17×106 and the root-mean-square radius is 103.5nm. 2. The light-scattering envelopes of various theoretical three-dimensional models for such DNA molecules were calculated by repetitive computational techniques, and the results were compared with the experimental findings. 3. It is concluded that the structure of supercoiled DNA containing −12 superhelical turns in buffer of I0.2 corresponds best to one of the more compact models for superhelix structure such as the branched model, and the commonly employed straight interwound superhelix model is incompatible with the experimental results, at the superhelix density found.  相似文献   

16.
Structure of alpha-chymotrypsin refined at 1.68 A resolution   总被引:16,自引:0,他引:16  
  相似文献   

17.
The crystal structure of pectate lyase E (PelE; EC 4.2.2.2) from the enterobacteria Erwinia chrysanthemi has been refined by molecular dynamics techniques to a resolution of 2.2 A and an R factor (an agreement factor between observed structure factor amplitudes) of 16.1%. The final model consists of all 355 amino acids and 157 water molecules. The root-mean-square deviation from ideality is 0.009 A for bond lengths and 1.721[deg] for bond angles. The structure of PelE bound to a lanthanum ion, which inhibits the enzymatic activity, has also been refined and compared to the metal-free protein. In addition, the structures of pectate lyase C (PelC) in the presence and absence of a lutetium ion have been refined further using an improved algorithm for identifying waters and other solvent molecules. The two putative active site regions of PelE have been compared to those in the refined structure of PelC. The analysis of the atomic details of PelE and PelC in the presence and absence of lanthanide ions provides insight into the enzymatic mechanism of pectate lyases.  相似文献   

18.
The structure of rhizopuspepsin (EC 3.4.23.6), the aspartic proteinase from Rhizopus chinensis, has been refined to a crystallographic R-factor of 0.143 at 1.8 A resolution. The positions of 2417 protein atoms have been determined with a root-mean-square (r.m.s.) error of 0.12 A. In the final model, the r.m.s. deviation from ideality for bond distances is 0.010 A, and for angle distances it is 0.034 A. During the course of the refinement, a calcium ion and 373 water molecules, of which 17 are internal, have been located. The active aspartate residues, Asp35 and Asp218, are involved in similar hydrogen-bonding interactions with neighboring residues and with several water molecules. One water molecule is located between the two carboxyl groups of the catalytic aspartate residues in a tightly hydrogen-bonded position. The refinement resulted in an unambiguous interpretation of the highly mobile "flap", a beta-hairpin loop region that projects over the binding pocket. Large solvent channels are formed when the molecules pack in the crystal, exposing the binding pocket and making it easily accessible. Intermolecular contacts involve mainly solvent molecules and a few protein atoms. The three-dimensional structure of rhizopuspepsin closely resembles other aspartic proteinase structures. A detailed comparison with the structure of penicillopepsin showed striking similarities as well as subtle differences in the active site geometry and molecular packing.  相似文献   

19.
The crystal structure of bovine pancreatic phospholipase A2 has been refined to 1.7 Å resolution. The starting model for this refinement was the previously published structure at a resolution of 2.4 Å (Dijkstra et al., 1978). This model was adjusted to the multiple isomorphous replacement map with Diamond's real space refinement program (Diamond, 1971,1974) and subsequently refined using Agarwal's least-squares method (Agarwal, 1978). The final crystallographic R-factor is 17.1% and the estimated root-mean-square error in the positional parameters is 0.12 Å. The refined model allowed a detailed survey of the hydrogen-bonding pattern in the molecule. The essential calcium ion is located in the active site and is stabilized by one carboxyl group as well as by a peptide loop with many residues unvaried in all known phospholipase A2 sequences. Five of the oxygen ligands octahedrally surround the ion. The sixth octahedral position is shared between one of the carboxylate oxygens of Asp49 and a water molecule. The entrance to the active site is surrounded by residues involved in the binding of micelle substrates. The N-terminal region plays an important role here. Its α-NH+3 group is buried and interacts with Gln4, the carbonyl oxygen of Asn71 and a fully enclosed water molecule, which provides a link between the N terminus and several active site residues. A total of 106 water molecules was located in the final structure, most of them in a two-layer shell around the protein molecule. The mobility in the structure was derived from the individual atomic temperature factors. Minimum mobility is found for the main chain atoms in the central part of the two long α-helices. The active site is rather rigid.  相似文献   

20.
The degradation of the immunomodulatory octapeptide, thymic humoral factor γ2 (THF-γ2, thymoctonan) has been studied in whole blood samples from human, rat and mouse. The peptide, Leu-Glu-Asp-Gly-Pro-Lys-Phe-Leu, was shown to be rapidly degraded by peptidases. The half-life of the intact peptide was less than 6 min at 37 °C in blood from the three species tested. The main fragments formed from THF-γ2 were found to be Glu-Asp-Gly-Pro-Lys-Phe-Leu (2–8), Asp-Gly-Pro-Lys-Phe-Leu (3–8) and Glu-Asp-Gly-Pro-Lys (2–6) in human and in rat blood and 2–8 and 2–6 in mouse blood. Analysis of the time course of degradation revealed a sequential removal of single amino acids from the N-terminus (aminopeptidase activities) in a process that was apparently unable to cleave the Gly-Pro bond (positions 4–5 in the peptide) together with an independent cleavage of the Lys-Phe bond (positions 6–7 in the peptide) to release the dipeptide Phe-Leu. This behaviour and the effects of inhibitors showed the involvement of metallo-exopeptidases in the N-terminal digestion and a phosphoramidon-sensitive metallo-endopeptidase in the cleavage of the Lys-Phe bond. The degradation patterns in human blood were modelled in terms of the competing pathways involved approximating to first-order kinetics, and an analytical solution obtained via the method of Laplace Transforms. The half-life of THF degradation in whole rat blood sample was found to be significantly lower than in human or mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号