首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acidophilic diatom Asterionella ralfsii cf. var. americana Körn. was grown in continuous culture to examine the influences of both pH and Al on Si-limited growth and uptake kinetics. In contrast to nutrient-replete cultures of A. ralfsii, lowering pH from approximately 6 to 5 reduced algal cell density, chlorophyll a concentration, and intensity of in vivo fluorescence (IVF) at steady state. The lower pH treatments were also characterized by lower Si cell quotas and higher residual dissolved Si concentrations in chemostats with similar nutrient supply rates. Physiological responses to Al stress differed from those to pH reduction when cultures were Si-limited. Nominal Al additions of 20 μmol·L?1 reduced chlorophyll a concentration and IVF values at higher pH, but all other biomass and chemical parameters remained constant at steady state. The combined efects of Al and reduced pH were more severe than either stress alone, inducing culture washout at pH 4.8. Short-term Si uptake experiments performed at pH 6 showed that Al influenced Michaelis-Menten parameter estimates. Half-saturation (Ks and maximum uptake rate (Vm) constants increased approximately 8- and 2-fold in the presence of Al, respectively, but this difference was only significant for Vm. Similar to previously observed effects of Al on cell morphology in A. ralfsii, Si uptake kinetics were more sensitive to Al additions than to Silimited growth per se.  相似文献   

2.
A laboratory study was made of the inhibition of photosynthesis, as measured by the radiocarbon method, of Asterionella Formosa Hass. by light from tungsten halogen lamps of irradiances up to that of full sunlight. The observed inhibitions were of total fixation of carbon and were not due to greatly increased release of extracellular products of photosynthesis. Inhibition increased width irradiance and with time of exposure. It was greater at high temperature, at high oxygen concentrations and when the cells were nutrient deficient. Recovery from exposure to high irradiances took place both in the dark and at low irradiances. The inhibition, which is similar to that observed under natural conditions, has the characteristics of photooxidative damage to both photochemical and dark reaction mechanisms.  相似文献   

3.
Diatoms are the main primary producers in the Southern Ocean, governing the major nutrient cycles. Fragilariopsis kerguelensis (O’Meara) Hust. is the most abundant diatom species in the Southern Ocean and its paleo‐oceanographic record is frequently used to reconstruct the past position and nutrient characteristics of the Antarctic polar front. Here we report on the responses of F. kerguelensis on prolonged exposure to a range of iron concentrations, allowing a characterization of morphological and nutrient‐depletion changes in relation to iron status. Under iron limitation, F. kerguelensis grew slower, cells became smaller, chains became shorter, and the nutrient‐depletion ratios changed. Prolonged exposure to iron limitation caused F. kerguelensis to decrease its surface area and volume 2‐fold, and to increase its surface‐to‐volume ratio by 25%. With the decrease in growth rates, silicon (Si) and phosphorus (P) depletion per cell remained fairly constant, but when normalized per surface area (Si) or per cell volume (P), depletion increased. In contrast, nitrogen (N) depletion per cell decreased significantly together with the decrease in growth rates but was constant when normalized per cell volume. The different response in Si, P, and N depletion resulted in changes in the nutrient‐depletion ratios, most notably in the Si:N ratio, which significantly increased, and in the N:P ratio, which significantly decreased with decreasing growth rates. It is concluded that under iron limitation, variation in cell size and/or nutrient depletion ultimately can cause changes in oceanic biogeochemical nutrient cycles. It enables the use of cell size of F. kerguelensis as a paleo‐oceanographic proxy.  相似文献   

4.
Information on the nutrient kinetics of Asterionella formosa Hass. and Cyclotella meneghiniana Kutz. under either phosphate or silicate limitation was obtained for use in a Monod model and in a variable internal stores model of growth. Short-term batch culture growth experiments were fit to the Monod model and long-term semicontinuous culture experiments and short-term uptake experiments were fit to the variable internal stores model. Mathematical analysis indicates that the parameters of the 2 models may be expressed in terms of each other at steady state. The qualitative results of both batch and steady state culture methods agree. For limiting phosphate experiments. A. formosa is better able to grow at low PO4-P concentrations than C. meneghiniana, as shown by its lower K for PO4-P limited growth. The kQ of A. formosa compared to C. meneghiniana found in long-term semicontinuous culture indicates that A. formosa is almost an order of magnitude more efficient at using internal phosphate for growth. The qualitative results under silicate-limited growth of C. meneghiniana is less than that of A. formosa. The kQ from semicontinuous culture experiments indicates that C. meneghiniana is the more efficient at using internal silicate for growth. Nutrient uptake experiments showed more variability from a Michaelis-Menten relationship than short-term growth experiments. There were no significant differences between the 2 species in half saturation constants for either phosphate or silicate uptake. We observed a marked dependence of the coefficient of luxury consumption (R) of phosphate on the steady state growth rate. A. formosa has a higher R than C. meneghiniana.  相似文献   

5.
Coscinodiscus radiatus Ehrenb. and Thalassiosira eccentrica (Ehrenb.) Cleve were grown in a silicate-limited chemostat at silicate concentrations below 1 μg-atoms · l?1. The resulting abnormal valves of C. radiatus lacked a thickened ring around the foramina; their pore membranes were thinner and their loculi shallower than those in normal cells. Abnormal valves of T. eccentrica had a fasciculate areolae pattern; they lacked a silica covering over the foramina and some tangential areolae walls. Neither abnormal valve could be termed a new species.  相似文献   

6.
Changes in colony size (cell number per colony) of Asterionella Formosa Hass. were experimentally evaluated in relation to water temperature using two types of clones having colony sizes of four or eight cells. The clones were isolated from two different temperate freshwater lakes. Both clones showed the same general trend with changing temperature. Most of the colonies were normal in size at low temperatures, but colony size was twice as large at high temperatures. Variable colony sizes were present at low percentages. Colony separation occurred at the oldest connection within the colony after cell division. Culture experiments showed that the rates of specific growth and colony separation were balanced except for a rather short period of time when the temperature was changed. Optical and scanning electron micrography did not show any distinctive morphological structure at the point of connection except for porelli and mucilage pads. Seasonal changes in colony size of A. formosa observed in a freshwater lake are discussed based on these temperature results.  相似文献   

7.
The effects of selenium deficiency on the siliceous and nonsiliceous components of the planktonic marine diatom Thalassiosira pseudonana (Hust.) Hasle and Heimdal (clone 3H) are examined using light and electron microscopy. Selenium deficiency induces elongation along the pervalvar axis initially as a result of chain formation caused by the failure of sibling cells to separate and subsequently by cell elongation via the production of hyaline girdle bands. In Se-deficient cultures cell elongation involves the blockage of both mitotic and cytokinetic components of cell division. Selenium deficiency results in ultrastructural alterations in the reticular membrane system and in mitochondrial and chloroplast membranes. Various types of inclusions are seen in vacuolar areas and the accumulation of lipid reserves is evident in Se-deficient cells. These results provide indirect evidence for a metabolic Se requirement in this algal species.  相似文献   

8.
The effects of selenium deficiency on the siliceous and nonsiliceous components of the planktonic marine diatom Thalassiosira pseudonana (Hust.) Hasle and Heimdal (clone 3H) are examined using light and electron microscopy. Selenium deficiency induces elongation along the pervalvar axis initially as a result of chain formation caused by the failure of sibling cells to separate and subsequently by cell elongation via the production of hyaline girdle bands. In Se-deficient cultures cell elongation involves the blockage of both mitotic and cytokinetic components of cell division. Selenium deficiency results in ultra-structural alterations in the reticular membrane system and in mitochondrial and chloroplast membranes. Various types of inclusions are seen in vacuolar areas and the accumulation of lipid reserves is evident in Se-deficient cells. These results provide indirect evidence for a metabolic Se requirement in this algal species.  相似文献   

9.
The photoprotective response in the dinoflagellate Glenodinium foliaceum F. Stein exposed to ultraviolet‐A (UVA) radiation (320–400 nm; 1.7 W · m2) and the effect of nitrate and phosphate availability on that response have been studied. Parameters measured over a 14 d growth period in control (PAR) and experimental (PAR + UVA) cultures included cellular mycosporine‐like amino acids (MAAs), chls, carotenoids, and culture growth rates. Although there were no significant effects of UVA on growth rate, there was significant induction of MAA compounds (28 ± 2 pg · cell?1) and a reduction in chl a (9.6 ± 0.1 pg · cell?1) and fucoxanthin (4.4 ± 0.1 pg · cell?1) compared to the control cultures (3 ± 1 pg · cell?1, 13.3 ± 3.2 pg · cell?1, and 7.4 ± 0.3 pg · cell?1, respectively). In a second investigation, MAA concentrations in UVA‐exposed cultures were lower when nitrate was limited (P < 0.05) but were higher when phosphate was limiting. Nitrate limitation led to significant decreases (P < 0.05) in cellular concentration of chls (chl c1, chl c2, and chl a), but other pigments were not affected. Phosphate availability had no effect on final pigment concentrations. Results suggest that nutrient availability significantly affects cellular accumulation of photoprotective compounds in G. foliaceum exposed to UVA.  相似文献   

10.
The relative photosynthetic efficiencies of net vs. nanoplankton and diatom vs. non-diatom plankton were estimated weekly in Woodcock Creek Reservoir, Pennsylvania, from April to November 1979, using carbon-14 in conjunction with size fractionation and germanium as a diatom inhibitor. The nanoplankton contributed a proportionally greater share of the community carbon assimilation than their share of the community biomass would indicate. Diatoms, specifically Asterionella formosa Hass. were photosynthetically inefficient and contributed significantly less than expected. The mechanism of periodic diatom dominance in lakes remains unexplained.  相似文献   

11.
The blue-green alga Synechococcus linearis (Naeg.) Kom. was grown in P- and N-limited chemostats over a range of potentially limiting irradiances in order to determine the combined effects of light and nutrient limitation on some aspects of the composition and metabolism of this alga. Over a narrow range of low irradiances, simultaneous limitation of growth rate by light and either N or P was shown. This simultaneous limitation of growth rate by a nutrient and a physical factor can be explained by the ability of an increased supply of one to compensate in part for a decreased supply of the other. At all irradiances, the internal concentration of the limiting nutrient increased with increasing dilution rate, and the results could be fitted to the Droop relationship. With decreasing irradiance, the internal concentration of the limiting nutrient increased. There appeared to be little or no effect of light on the minimum internal concentration of P but that of N increased with decreasing light. Both chlorophyll a and biliprotein per unit particulate C increased with increasing dilution rate and decreasing irradiance. The critical N/P ratio increased with decreasing light as the N requirement of N-limited cells increased faster than did the P requirement of P-limited cells. The composition of exponentially growing cells in complete medium varied much less with light. Neither dilution rate nor irradiance during growth had a great effect on saturated rates of P or N uptake or alkaline phosphatase activity. Calculated assimilation ratios increased with light and dilution rate. The role of the flexibility of nutrient composition in adaptation to adverse conditions and the implications of the results for the use of physiological indicators of nutrient status are discussed.  相似文献   

12.
13.
Production of domoic acid (DA), a neurotoxin, by the diatom Pseudo-nitzschia multiseries (previously Nitzschia pungens f. multiseries) Hasle and its cellular chemical composition were studied in phosphate-limited chemostat continuous cultures and in subsequent batch cultures. Under steady-state chemostat conditions, DA production increased from 0.01 to 0.26 pg DA · cell?1· d?1 as the growth rate decreased. When the nutrient supply was discontinued (to produce a batch culture), DA production was enhanced by a factor of ca. 3. DA production was temporarily suspended upon addition of phosphate to the batch cultures but resumed 1 d later at a higher rate coincident with the decline of phosphate uptake. In both steady-state continuous culture and batch culture, more DA was produced when alkaline phosphatase activity (APA) was high. The association of high DA production with high levels of APA and high cellular N:P ratios strongly suggests that phosphate limitation enhances DA production. Also, DA production was high when other primary metabolism (e.g. uptake of carbon, nitrogen, phosphorus and silicon, and cell division) was low, but chlorophyll a and adenosine triphosphate were generally high. This suggests that the synthesis of DA requires a substantial amount of biogenic energy.  相似文献   

14.
The effects of iron limitation on photoacclimation to dynamic irradiance were studied in Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) W. Krieg. in terms of growth rate, photosynthetic parameters, pigment composition, and fluorescence characteristics. Under dynamic light conditions mimicking vertical mixing below the euphotic zone, P. antarctica displayed higher growth rates than F. cylindrus both under iron (Fe)–replete and Fe‐limiting conditions. Both species showed xanthophyll de‐epoxidation that was accompanied by low levels of nonphotochemical quenching (NPQ) during the irradiance maximum of the light cycle. The potential for NPQ at light levels corresponding to full sunlight was substantial in both species and increased under Fe limitation in F. cylindrus. Although the decline in Fv/Fm under Fe limitation was similar in both species, the accompanying decrease in the maximum rate of photosynthesis and growth rate was much stronger in F. cylindrus. Analysis of the electron transport rates through PSII and on to carbon (C) fixation revealed a large potential for photoprotective cyclic electron transport (CET) in F. cylindrus, particularly under Fe limitation. Probably, CET aided the photoprotection in F. cylindrus, but it also reduced photosynthetic efficiency at higher light intensities. P. antarctica, on the other hand, was able to efficiently use electrons flowing through PSII for C fixation at all light levels, particularly under Fe limitation. Thus, Fe limitation enhanced the photophysiological differences between P. antarctica and diatoms, supporting field observations where P. antarctica is found to dominate deeply mixed water columns, whereas diatoms dominate shallower mixed layers.  相似文献   

15.
Resting spores (hypnospores) of Chaetoceros diadema (Ehrenberg) Gran, Chaetoceros vanheurckii Gran, and Chaetoceros didymus Ehrenberg were collected from a large plastic enclosure moored in Saanich Inlet, B.C., Canada. The effects of combinations of temperature and irradiance on the germination of these resting spores were investigated. Nutrient uptake, carbon fixation, and changes in the photosynthetic capacity of the germinating spores were also examined. Resting spores germinated optimally at combinations of temperature and irradiance similar to those in the environment during sporulation. They did not germinate at irradiances 1.3 μEin m?2 s?1 or temperatures >25.3° C. Nitrate, phosphate and silicate were taken up after the resting spores had germinated and resumed vegetative growth. Chlorophyll a fluorescence in vivo, and the DCMU-induced increase in in vivo fluorescence also increased after the resting spores had germinated. Resting spores began to fix carbon as soon as they were placed in light. Spores remained viable for at least 645 d. The length of time between first exposure to light and germination did not change during this period; however, the percentage of viable resting spores decreased markedly. None of the Chaetoceros spores germinated after 737 d of storage at 2–4° C in darkness.  相似文献   

16.
Specimens of Synedra goulardi Bréb. from samples taken in Costa Rica were acid cleaned and examined by light and scanning electron microscopy. This linear-lanceolate diatom displays an unusual pattern of markings in its central area which have been mistaken as striae but are actually internal costae. As is typical for members of its genus and that of many other genera in the Fragilariaceae, S. goulardi possesses non-stalked labiate processes, apical pore fields and a lack of marginal spines. There is a great deal of variability in the striae of the genus, ranging from single rows of puncta to areolate striae. Synedra goulardi has double punctate striae. The presence of fossil forms (Neogene) with single punctate striae suggest this may be a primitive condition in the genus.  相似文献   

17.
Recent studies have led to a rapid increase in knowledge of auxospore formation in diatoms. However, these studies have been limited to centric and raphid pennate diatoms, and there is still very little information for the araphid pennate diatoms. Using LM and SEM, we studied the development of the auxospore and the initial cell of the marine epiphytic diatom Gephyria media Arnott. Auxospores were bipolar and curved in side view, as in many other pennate diatoms. SEM revealed many transverse perizonial bands, all of which were incomplete rings. There was an elongate, sprawling, silicified structure beneath the ventral suture of the transverse perizonial bands. This structure is presumably equivalent to the longitudinal perizonial band in other pennate diatoms, although we could not determine the homologous relationship between the two features. Scales were found both in the inner wall of the perizonium and around the primary perizonial bands. The presence or absence of scales may be of phylogenetic significance in diatoms, only during the final stages of auxospore formation because scales are found in early spherical stages. The distinctive finger‐like structures observed throughout all stage of G. media have not been observed before in the other diatom taxa.  相似文献   

18.
Phytoplankton growth rate in response to irradiance can be approximated by a hyperbola defined by three coefficients: i) initial slope (α); ii) asymptote (μm); and, iii) X-axis intercept or compensation irradiance (Ic). To mathematically represent the interaction of temperature and irradiance on growth rate, one must describe the relationship between these constants and temperature. The marine diatom, Skeletonema costatum (Greville) Cleve, was grown in unialgal culture at different levels of irradiance and 2-3 photoperiods at 0, 5, 10, 16 and 22 C. The value of Ic is ca. 1.0 ly·day?1 or less at all temperatures. The initial slope (div·ly?1) is a “u-shaped” function of temperature described by the second degree polynomial, α= 0.25–0.02T+0.001T2. Within the range 0–10 C, μm (div·day?1) is an exponential function of temperature described by the equation, μm= 0.48 exp (0.126T). At each temperature and selected levels of irradiance, cell size and cellular content of C, N and chl a were determined. The C:chl a and N:chl a ratios increased with irradiance because of increases in C and decreases in chl a. At lower temperatures (0, 5, 10 C), the rate of increase of both ratios with irradiance was greater than at the higher temperatures (16, 22 C). Cellular content of N was independent of irradiance and temperature, and the C:N ratio ranged from 5 to 8 with a slight tendency to lower values at low irradiance. Cell volume was not influenced by either temperature or irradiance.  相似文献   

19.
Photosynthetic characteristics and chloroplast ultrastructure of Cyclotella meneghiniana Kütz. were quantified while the organism was simultaneously adjusting to light and nutrient stress. Cells were grown in batch culture at either low or high light intensity on medium with a nitrogen/phosphorus molar ratio of 2:1 as a control, or with nitrogen or phosphorus deleted from the medium to create nutrient deficiencies. Analysis of variance indicated that light intensity, nutrient deficiency and duration of nutrient deficiency all had significant effects on cell growth, chlorophyll (Chl) concentration/cell, cellular fluorescence capacity (CFC), chloroplast volume and thylakoid surface density. Because interactions existed among nutrient deficiency, extent of nutrient deficiency, and light intensity, all three must be considered together in order to describe accurately the physiology and chloroplast ultrastructure of the diatom. Significant correlations were found between the Chl/cell or CFC/cell and chloroplast volume and thylakoid surface density. Through an increase in Chi concentration, chloroplast volume and thylakoid surface density, the cells successfully adapted to the conditions of low light intensity even while under nutrient stress. In contrast, less Chl/cell, smaller chloroplast volume and less thylakoid surface density were found at high light intensity.  相似文献   

20.
Extracellular polymeric substance (EPS) secretion was examined in the stalked marine diatom Achnanthes longipes Ag. in defined medium. This common biofouling diatom exhibited an absolute requirement for bromide for stalk production and substratum attachment, whereas elevated iodide concentrations in the growth medium inhibited stalk formation and adhesion. Varying EPS morphologtes resulted from altering bromide and iodide levels: pads, stalk-pads, stalks, and no EPS. Cells showed no differences in growth with bromide or iodide concentrations, indicating that they were not physiologically stressed under conditions that impaired EPS secretion. Cells grown in elevated iodide secreted significantly more soluble extracellular carbohydrate into the medium, suggesting that the EPS was soluble and unable to be polymerized into a morphologically distinct gel. By replacing sulfate with methionine, the diatom lost its ability to form stalks even in the presence of bromide, indicating that free sulphate may be required for proper cross-linking of stalk polymers. Lotus-FITC, a fluorescent-tagged lectin, preferentially labeled the EPS and, thus, was used to visualize and quantify EPS secretion along a bromide gradient in conjunction with an image analysis system. This technique demonstrated a direct correlation between the amount of bromide present in the medium and the specific EPS morphology formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号