首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The parenteral administration of bacterial endotoxin to rats causes a hypothermia that is maximal after approximately 90 minutes. When endotoxin-injected rats were held in a controlled environment at 22°C and 50% relative humidity and exposed for 90 minutes to microwaves (2450 MHz, CW) at 1 mW/cm2, significant increases were observed in body temperature compared with endotoxintreated, sham-irradiated rats. The magnitude of the response was related to power density (10 mW/cm2 > 5 mW/cm2 > 1 mW/cm2). Saline-injected rats exposed for 90 minutes at 5 mW/cm2 (specific absorption rate approximately 1.0 mW/g) showed no significant increase in body temperature compared with saline-injected, sham-irradiated rats. The hypothermia induced by endotoxin in rats was also found to be affected by ambient temperature alone. Increases in ambient temperature above 22°C in the absence of microwaves caused a concomitant increase in body temperature. This study reveals that subtle microwave heating is detectable in endotoxin-treated rats that have an impaired thermoregulatory capability. These results indicate that the interpretation of microwave-induced biological effects observed in animals at comparable rates and levels of energy absorption should include a consideration of the thermogenic potential of microwaves.  相似文献   

2.
Adult male Wistar rats were exposed for 2 h a day, 7 days a week for up to 30 days to continuous 2450 MHz radiofrequency microwave (rf/MW) radiation at a power density of 5–10 mW/cm2. Sham-exposed rats were used as controls. After ether anesthesia, experimental animals were euthanized on the final irradiation day for each treated group. Peripheral blood smears were examined for the extent of genotoxicity, as indicated by the presence of micronuclei in polychromatic erythrocytes (PCEs). The results for the time-course of PCEs indicated significant differences (P<0.05) for the 2nd, the 8th and the 15th day between control and treated subgroups of animals. Increased influx of immature erythrocytes into the peripheral circulation at the beginning of the experiment revealed that the proliferation and maturation of nucleated erythropoietic cells were affected by exposure to the 2450 MHz radiofrequency radiation. Such findings are indicators of radiation effects on bone-marrow erythropoiesis and their subsequent effects in circulating red cells. The incidence of micronuclei/1000 PCEs in peripheral blood was significantly increased (P<0.05) in the subgroup exposed to rf/MW radiation after eight irradiation treatments of 2 h each in comparison with the sham-exposed control group. It is likely that an adaptive mechanism, both in erythrocytopoiesis and genotoxicity appeared in the rat experimental model during the subchronic irradiation treatment.  相似文献   

3.
In one experiment, Sprague Dawley rats (16–21 days of gestation) and their offspring were exposed to 100-MHz (CW) electromagnetic radiation at 46 mW/cm2 (SAR 2.77 mW/g) for 4 h/day for 97 days. In another experiment, the pregnant rats were irradiated daily from 17 to 21 days of gestation with 2450-MHz (CW) microwaves at 10 mW/cm2 (SAR 2 mW/g) for 21 h/day. In a third experiment, 6-day-old rat pups were irradiated 7 h/day for five days with 2450-MHz radiation at 10 mW/cm2. Equal numbers of animals were sham irradiated in each group. Quantitative studies of Purkinje cells showed a significant and irreversible decrease in rats irradiated during fetal or fetal and early postnatal life. In animals exposed postnatally, and euthanized immediately after irradiation, significant decrease in the relative number of Purkinje cells was apparent. However, restoration apparently occurred after forty days of recovery.  相似文献   

4.
Female CD 1 mice were exposed from the thirty-fifth day of age for the remainder of their lives to 2.45 GHz, CW-microwave radiation at a power density of 3 or 10 m W/cm2 (SAR = 2.0 or 6.8 W/kg). Exposures took place 1 h/day, 5 day/week in an anechoic chamber at an ambient temperature of 22 °C and a relative humidity of 50%. There were 25 animals in each exposure group, and an equal number of controls were concurrently sham exposed. The average life span of animals exposed at 10 mW/cm2 was significantly shorter than that of sham-exposed controls (572 days vs. 706 days; P = .049; truncation >20%). In contrast, the average lifespan of the animals exposed at 3 mW/cm2 was slightly, but not significantly, longer (738 days) than that of controls (706 days). © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    C3H/HeA mice with high incidence of spontaneous breast cancer and Balb/c mice treated with 3,4-benzopyrene (BP) (by painting of the skin resulting in the development of skin cancer) were irradiated with 2,450-MHz microwaves (MW) in an anechoic chamber at 5 or 15 mW/cm2 (2 h daily, 6 sessions per week). C3H/HeA mice were irradiated from the 6th week of life, up to the 12th month of life. Balb/c mice treated with BP were irradiated either prior to (over 1 or 3 months) or simultaneously with BP treatment (over 5 months). The appearance of palpable tumors in C3H/HeA mice and of skin cancer in BP-treated Balb/c mice was checked every 2 weeks for 12 months. Two additional groups of mice were exposed to chronic stress caused by confinement or to sham-irradiation in an anechoic chamber; these served as controls. Irradiation with MWs at either 5 or 15 mW/cm2 for 3 months resulted in a significant lowering of natural antineoplastic resistance (mean number of lung neoplastic colonies was 2.8 ± 1.6 (SD) in controls, 6.1 ± 1.8 in mice exposed at 5 mW/cm2 and 10.8 ± 2.1 in those irradiated at 15 mW/cm2) and acceleration of development of BP-induced skin cancer (285 days in controls, 230 days for 5 mW/cm2 and 160 days for 15 mW/cm2). Microwave-exposed C3H/HeA mice developed breast tumors earlier than controls (322 days in controls, 261 days for 5 mW/cm2 and 219 days for 15 mW/cm2). A similar acceleration was observed in the development of BP-induced skin cancer in mice exposed simultaneously to BP and MWs (285 days in controls, 220 day for 5 mW/cm2 and 121 days for 15 mW/cm2). The acceleration of cancer development in all tested systems and lowering of natural antineoplastic resistance was similar in mice exposed to MW at 5 mW/cm2 or to chronic stress caused by confinement but differed significantly from the data obtained on animals exposed at 15 mW/cm2, where local thermal effects (“hot” spots) were possible.  相似文献   

    6.
    Summary An investigation was conducted to determine the effects of relatively low power density microwave exposures on various serum components of the Dutch rabbit. Both continuous wave and pulsed mode exposures at 2.45 GHz were used at power densities of 25, 10 and 5 mW/cm2. Studies of 10 serum components were performed. Additional studies were conducted on changes in sleeping times of pentobarbital-sedated rabbits at various power densities. Gross and histopathological examinations were performed on representative samples of animals.Changes in the blood chemistry of irradiated animals were consistent with a dose-dependent response to a non-specific thermal stress at all power densities used. Observed physiological response, as well as rectal temperature measurements, indicated that the thermoregulatory capability of the rabbits was sufficient to compensate for the thermal burden at 5 and 10 mW/cm2, but could be overridden by a 2 h exposure at 25 mW/cm2. Pathology findings included a mild, repairable nephrosis in animals exposed at a power density of 25 mW/cm2.A further investigation of analeptic effects at power densities varying from 5 mW/cm2 to 50 mW/cm2 resulted in a statistically significant decrease in sleeping times, apparently proportional to power density below 15 mW/cm2.This research was partially supported by the US Army Medical Research and Development Command, Contract No. DADA17-72-C-2144. (The views expressed are those of the authors and do not necessarily reflect those of the Department of the Army)  相似文献   

    7.
    The present work describes the effect of low level continuous microwaves (2.45 GHz) on developing rat brain. Some 35-day-old Wistar rats were used for this study. The animals were exposed 2 hr/day for 35 days at a power density of 0.34 mW/cm2 [specific absorption rate (SAR), 0.1 W/kg] in a specially made anechoic chamber. After the exposure, the rats were sacrificed and the brain tissue was dissected out and used for various biochemical assays. A significant increase in calcium ion efflux and ornithine decarboxylase (ODC) activity was observed in the exposed group as compared to the control. Correspondingly, a significant decrease in the calcium-dependent protein kinase activity was observed. These results indicate that this type of radiation affects the membrane bound enzymes, which are associated with cell proliferation and differentiation, thereby pointing out its possible role as a tumor promoter.  相似文献   

    8.
    The acute effects of microwave exposure on a repeated acquisition baseline were investigated in three rats. Each session the animals acquired a different four-member response sequence. Each of the first three correct responses advanced the sequence to the next member, and the fourth correct response produced food reinforcement. Incorrect responses produced a three-second timeout. Baseline and control sessions were characterized by a decrease in errors within each session. The animals were acutely exposed to a 2.8 GHz pulsed-microwave field prior to test sessions, with average power densities ranging from 0.25 to 10 mW/cm2. In comparison to control sessions, 1/2 hour of exposure to microwave radiation at power densities of 5 and 10 mW/cm2 increased errors and altered the pattern of within-session acquisition. Exposure to the 10 mW/cm2 power density decreased the rate of sequence completion in all animals. The results of exposures at 0.25, 0.5, and 1 mW/cm2 power densities were generally within the control range. The results are interpreted as indicating a disruption in the discriminative stimulus control of the repeated acquisition behavior.  相似文献   

    9.
    Pregnant mice were irradiated for 5 hours daily throughout the pregnancy with pulsed microwaves at an incident average power density of 8 mW/cm2, or were sham irradiated. After birth, from day 3 to day 20, half the offspring delivered by irradiated mice were irradiated (RR group) and half were sham-irradiated (RC group). The same procedure was used for offspring delivered by sham-irradiated mice (CR and CC). All offspring were sacrificed at 22 days of age. Histochemical analyses of the hypothalamus and liver were performed with a microspectrophotometer. The data suggested that succinate dehydrogenase in the hypothalamus was reduced by either pre-or post-natal microwave exposure. Similar changes occurred in the liver. The same pattern appeared with hypothalamic catechol-amine and monoamine oxidase. The data indicate that low-intensity microwave exposure can induce subtle alterations in offspring not detected with previously used techniques.  相似文献   

    10.
    Five food-deprived rhesus monkeys were exposed to 225-MHz continuous-wave, and 1.3-GHz, and 5.8-GHz pulsed radiation to determine the minimal power densities affecting performance. The monkeys were trained to press a lever (observing-response) thereby producing signals that indicated availability of food. In the presence of the aperiodically appearing food signals, a detection response on a different lever was reinforced by a food pellet. Continuous, stable responding during 60-min sessions developed and was followed by repeated exposures to radiofrequency radiation. The subjects, restrained in a Styrofoam chair, were exposed to free-field radiation while performing the task. Colonic temperature was simultaneously obtained. Observing-response performance was impaired at increasingly higher power densities as frequency increased from the near-resonance 225 MHz to the above-resonance 5.8 GHz. The threshold power density of disrupted response rate at 225 MHz was 8.1 mW/cm2; at 1.3 GHz it was 57 mW/cm2, and at 5.8 GHz it was 140 mW/cm2. These power densities were associated with reliable increases in colonic temperatures above sham-exposure levels. The mean increase was typically in the range of 1°C, and response-rate changes were not observed in the absence of concomitant temperature increases. In these experiments increase of colonic temperature was a much better predictor of behavioral disruption than was either the power density of the incident field or estimates of whole-body-averaged rates of energy absorption.  相似文献   

    11.
    Microwave‐induced corneal endothelial damage was reported to have a low threshold (2.6 W/kg), and vasoactive ophthalmologic medications lowered the threshold by a factor of 10–0.26 W/kg. In an attempt to confirm these observations, four adult male Rhesus monkeys (Macaca mulatta) under propofol anesthesia were exposed to pulsed microwaves in the far field of a 2.8 GHz signal (1.43 ± 0.06 µs pulse width, 34 Hz pulse repetition frequency, 13.0 mW/cm2 spatial and temporal average, and 464 W/cm2 spatial and temporal peak (291 W/cm2 square wave equivalent) power densities). Corneal‐specific absorption rate was 5.07 W/kg (0.39 W/kg/mW/cm2). The exposure resulted in a 1.0–1.2 °C increase in eyelid temperature. In Experiment I, exposures were 4 h/day, 3 days/week for 3 weeks (nine exposures and 36 h total). In Experiment II, these subjects were pretreated with 0.5% Timolol maleate and 0.005% Xalatan® followed by 3 or 7 4‐h pulsed microwave exposures. Under ketamine–xylazine anesthesia, a non‐contact specular microscope was used to obtain corneal endothelium images, corneal endothelial cell density, and pachymetry at the center and four peripheral areas of the cornea. Ophthalmologic measurements were done before and 7, 30, 90, and 180 days after exposures. Pulsed microwave exposure did not cause alterations in corneal endothelial cell density and corneal thickness with or without ophthalmologic drugs. Therefore, previously reported changes in the cornea exposed to pulsed microwaves were not confirmed at exposure levels that are more than an order of magnitude higher. Bioelectromagnetics 31:324–333, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

    12.
    In this work, sediment microbial fuel cell (SMFC) with granule activated carbon (GAC) cathode and stainless steel anode was constructed in laboratory tests and various factors on SMFC power output were investigated. The maximum power densities for the SMFC with GAC cathode was 3.5 mW m−2, it was much higher than SMFC with round stainless steel cathode. Addition of cellulose reduced the output power from SMFC at the beginning of experiments, while the output power was found to increase after adding cellulose to sediments on day 90 of operation. On 160 day, maximum power density from the SMFC with adding 0.2% cellulose reached to 11.2 mW m−2. In addition, the surface morphology of stainless steel anode on day 90 was analyzed by scanning electron microscope. It was found that the protection layer of the stainless steel as electrode in SMFCs was destroyed to some extent.  相似文献   

    13.
    Human marrow cells were irradiated with 2450-MHz CW microwaves in a fluid-filled waveguide irradiation system. Cell exposure was conducted by placing a marrow cell suspension in 20-μl glass microcapillary tubes that were positioned in the exposure chamber, and irradiated at power densities from 31 to 1,000 mW/cm2 (with corresponding specific absorption rates of 62 to 2,000 mW/g) for 15 minutes. The temperature of the sample was maintained at a fixed point. Sham-irradiated (SI) and microwave-irradiated (MWI) cells were cultured in a methylcellulose culture system for neutrophil colony proliferation. There was no reduction in neutrophil colony number on days 6–7 or 12–14 in cells exposed at 31 or 62 mW/cm2, but as the power density was increased to 1,000 mW/cm2, there was a reduction in colony number of MWI cells compared with SI cells. The microwave interaction with the human neutrophil colony-forming cells was apparently not related to temperature rise, or to the state of cell cycle, and was irreversible.  相似文献   

    14.
    Two groups of 16 male New Zealand rabbits were exposed to 2450-MHz continuous wave microwave fields in two experiments of 90 days each. The incident power densities of the first and second experiment were 0.5 and 5 mW/cm2, respectively. During each study, 16 animals were adapted to a miniature anechoic chamber exposure system for at least 2 weeks, then 8 of them were exposed for 7 h daily, 5 days a week for 13 weeks, and the other 8 animals were sham exposed. The rabbits were placed in acrylic cages, and each was exposed from the top in an individual miniature anechoic chamber. Thermography showed a maximum specific absorption rate of 5.5 W/kg in the head and 7 W/kg in the back at 5-mW/cm2 incident power density. After each 7-h exposure session, the animals were returned to their home cages. Food consumption in the exposure chamber and body mass were measured daily. Blood samples were taken before exposure and monthly thereafter for hematological, morphological, chemical, protein electrophoresis, and lymphocyte blast transformation studies. Eyes were examined for cataract formation. Finally, pathological examinations of 28 specimens of organs and tissues of each rabbit were performed. Statistically, there was a significant (P < .01) decrease only of food consumption during the 5-mW/cm2 exposure; other variables were not significantly different between exposed and control groups.  相似文献   

    15.
    A significant increase was observed in the circulating antibody titers of mice exposed to 9-GHz pulsed microwaves at an average power density of 10 mW/ cm2, two hours per day for five days compared with sham-irradiated animals. The mice were previously immunized with type III pneumococcal polysaccharide. Following irradiation, a portion of the immunized animals were challenged with virulent Streptococcus pneumoniae, type III. Ten days after challenge, mortality was essentially the same in the two groups, but during the ten day period, there was a noticeable increase in the survival time of the irradiated animals compared with the sham-irradiated animals, suggesting that the increased circulating antibody response afforded some degree of temporary protection to the animals.  相似文献   

    16.
    A biphasic modulation of responsiveness of spleen lymphocytes to mitogens was observed in mice exposed to 2,450-MHz radiation at power densities of 5–15 mW/cm2 over various periods ranging between one and 17 days. This modulated phenomenon may be explained on the basis of 1) suppression of lymphocyte response by microwave-activated macrophages which persists throughout the entire course of radiation, and 2) concurrent progressive direct stimulation of lymphocytes which culminates around day 9 of exposure. Tumor cytotoxicity of killer lymphocytes from mice exposed to five or nine days of radiation did not appear different from sham controls. The highly proliferative hematopoietic marrow cells were sensitive to microwave radiation. Nine days of exposure to radiation (15 mW/cm2) reduced the colonyforming units of myeloid and erythroid series by 50%. This observation may offer a new and more sensitive assay for studying biological effects of electromagnetic radiation.  相似文献   

    17.
    Human skin fibroblast monolayers (S-126 cell line) were exposed to laser radiation (wavelength 670 nm, power density 40 mW/cm2). The energy densities were 2 J/cm2 and 12 J/cm2, respectively, and the irradiation was carried out at a temperature of 22°C. For fibroblast viability evaluation, the colorimetric assay (conversion of thiazolyl blue to formazan) was used. The experiments were carried out at 37°C, in the presence of 5% CO2, and at different time periods of incubation after irradiation (2, 4, 8 h and 1, 2, 3, 4, 5 days). The results indicated that there was a certain stimulating effect on the long-term proliferation of skin fibroblasts and that the stimulation proceeded in two stages, the first one 2 h and the second one 3 days post-irradiation. Received 7 January 1998 / Accepted in revised form: 11 June 1998  相似文献   

    18.
    We studied the effect of He–Ne laser on regeneration of damaged gastrocnemius muscle in rats irradiated at 6 Gy in conditions of fractional laser energy spread (10 exposures, 3 min for each limb, within 30 days after the operation; 2–3 exposures weekly; 2.5–3.0 mW/cm2 power density; and 9.0–10.8 J/cm2 total dose per animal). Laser radiation stimulated regenerative activity of the skeletal muscle and favored a more even distribution of load on the thymus (a smooth decrease in its weight and slow aplasia). The level of chromosomal aberrations in the thymocytes demonstrated certain instability although remained lower as compared to the control during the whole observation period (60 days).  相似文献   

    19.
    The effects of microwave irradiation at two different frequencies (1.28 and 5.62 GHz) on observing-behavior of rodents were investigated. During daily irradiation, eight male hooded rats performed on a two-lever task; depression of one lever produced one of two different tones and the other lever produced food when depressed in the presence of the appropriate tone. At 5.62 GHz, the observing-response rate was not consistently affected until the power density approximated 26 mW/cm2 at 1.28 GHz, the observing-response rate of all rats was consistently affected at a power density of 15 mW/cm2. The respective whole-body specific absorption rates (SARs) were 4.94 and 3.75 W/Kg. Measurements of localized SAR in a rat-shaped model of simulated muscle tissue revealed marked differences in the absorption pattern between the two frequencies. The localized SAR in the model's head at 1.28 GHz was higher on the side distal to the source of radiation. At 5.62 GHz the localized SAR in the head was higher on the proximal side. It is concluded that the rat's observing behavior is disrupted at a lower power density at 1.28 than at 5.62 GHz because of deeper penetration of energy at the lower frequency, and because of frequency-dependent differences in anatomic distribution of the absorbed microwave energy.  相似文献   

    20.
    Four groups of C57BL mice were irradiated with 3 GHz pulse (PW) microwaves for 3 hours at incident power densities of 0.1, 0.5, 1 and 5 mW/cm2 respectively. The amount of mitochondria1 marker enzymes succinate dehydrogenase (SDH) and monoamine oxidase (MAO) in the hypothalamus and hippocampus were determined by microspectrophotometry. SDH and MA0 in the irradiated groups (except 0.1 mW/cm2) were significantly lower compared to the control group (p < 0.01). The lowest level occurred in the 5 mW/cm2 group. The threshold level was 0.5 mW/cm2. To compare the effects of PW with continuous wave (CW) exposure, two experimental groups were exosed to 2.45 GHz, using CW; the enzymes were decreased only in the 5 mW/cm2 group. The results show that PW radiation is more effective then CW radiation in decreasing SDH and MA0 levels.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号