首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The motion of Paramecium caudatum has been investigated at various temperatures by measuring the transient behavior of spatial distribution in the diffusion process of organisms that, by electric stimulus, are initially gathered at a single place in the glass culture cell. The spatial distribution through the course of diffusion has a nearly Gaussian profile. Dispersion was obtained at 1 sec intervals and increased linearly with time. The time dependence of the dispersion gave a diffusion coefficient for the random motion of the organisms. The results show that the diffusion coefficient has a maximum at the temperature at which the paramecia were cultivated.  相似文献   

2.
1. Spatial heterogeneity in population density is predicted to have important effects on population characteristics, such as competition intensity and carrying capacity. Patchy breeding distributions will tend to increase spatial heterogeneity in population density, whereas dispersal from breeding patches will tend to decrease it. The potential for dispersal to homogenize densities is likely to differ both among organisms (e.g. plants vs. mobile animals) and throughout ontogeny (e.g. larvae vs. adults). However, for mobile organisms, experimental studies of the importance of breeding distributions from the wild are largely lacking. 2. In the present study, experimental manipulations replicated over eight natural streams and 2 years enabled us to test for effects of the distribution of Atlantic salmon eggs over spatial scales which are relevant to local interactions among individuals. Artificial nests were placed along 250 m study reaches at one of two levels of nest dispersion - patchy (two nests per stream) and dispersed (10 nests per stream) - while holding total egg density (eggs m(-2) stream area) constant. 3. Nest dispersion had significant effects on the spatial distribution of the resulting juveniles in their first summer. Patchy nest distributions resulted in a highly right-skewed frequency distribution of local under-yearling densities (among 25 m sampling sections), as sample sections adjacent to the nest sites had relatively high densities. In contrast, dispersed nest distributions yielded approximately normal density distributions. Sections with high relative densities in the patchy nest distribution treatments also had relatively small juvenile body sizes, and patchy egg distribution appeared to produce a higher redistribution of individuals from the first to the second juvenile growth season than the dispersed distribution. 4. Because patchy breeding distribution combined with limited early dispersal can create spatial variation in density over scales directly relevant for individual interactions, this will be one important component in determining mean levels of early juvenile competition and its spatial variation within populations. Assuming random or ideal-free distribution of individuals may therefore underestimate the mean level of density experienced by juveniles over surprisingly small spatial scales (orders of magnitude smaller than total spatial extent of populations), even for mobile organisms.  相似文献   

3.
We focus on the question of how the dispersion of an invading population is affected by the spatial distribution of patches that have resource available for the population’s settlement and reproduction. We have developed and analyzed a mathematical model with a simple stochastic process. The patches are grouped into three classes – free, occupied and abandoned – depending on the state of the patch used by the population. We especially consider the range expanded by invaded patches, the invaded range R, assuming a certain generalized relation between R and the total number of invaded patches k, making use of an index, a sort of fractal dimension, to characterize the spatial distribution of invaded patches. We show that the expected velocity is significantly affected by the nature of spatial distribution of resource patches, and is temporally variable. When the invading population finally becomes extinct at a certain moment, the terminal size of the invaded range at that the moment is closely related to the nature of the spatial distribution of resource patches, which is explicitly demonstrated by our analysis.  相似文献   

4.
The spatial distribution of three phytophagous mites,Panonychus ulmi (Koch),Tetranychus urticae Koch andAculus schlechtendali (Nalepa), and two predacious mites,Zetzellia mali (Ewing) andAmblyseius fallacis (Garman), and the effect of pyrethroid lambdacyhalothrin applications on mite spatial dispersion were investigated over a 3-year period in an apple orchard in Ontario. The index of dispersion and the slope of Taylor's power law were used to evaluate dispersion patterns of mites. Panonychus ulmi showed that between-tree spatial variation decreased with an increase of population densities, whereas between-leaf variation increased with population densities. With all other four species it appeared that between-tree variation is much greater than between-leaf variation at all field population density levels. The values ofb by Taylor's power law suggested that all five species of mites are aggregated, but that in generalP. ulmi andT. urticae (b=1.427–1.872) are more aggregated than their predators (b=1.254–1.393). Taylor's regression technique suggests that pyrethroid applications causedP. ulmi, T. urticae, Z. mali andA. fallacis to be less aggregated whileA. schlechtendali was more aggregated. The impact of changes in mite spatial distribution following pyrethroid applications on sampling plans is discussed.  相似文献   

5.
An integro-differential equation on a tree graph is used to model the time evolution and spatial distribution of a population of organisms in a river network. Individual organisms become mobile at a constant rate, and disperse according to an advection-diffusion process with coefficients that are constant on the edges of the graph. Appropriate boundary conditions are imposed at the outlet and upstream nodes of the river network. The local rates of population growth/decay and that by which the organisms become mobile, are assumed constant in time and space. Imminent extinction of the population is understood as the situation whereby the zero solution to the integro-differential equation is stable. Lower and upper bounds for the eigenvalues of the dispersion operator, and related Sturm-Liouville problems are found. The analysis yields sufficient conditions for imminent extinction and/or persistence in terms of the values of water velocity, channel length, cross-sectional area and diffusivity throughout the river network.  相似文献   

6.
For insects that develop on few hosts and/or have immobile immature stages, optimal oviposition theory suggests that females should seek high‐quality hosts that maximize larval development and reduce competition from conspecifics. However, there is a growing amount of evidence that suggests female choice may often be at odds with their offspring's development. Listronotus maculicollis (Kirby) (Coleoptera: Curculionidae) is a serious pest of golf course turfgrass in eastern North America. The weevil develops on few hosts and demonstrates improved fitness traits when developing on Poa annua L. (Poaceae). However, previous population studies observed either weak or no correlations between the spatial dispersion of larval populations and P. annua in the field. In this study, populations on three golf course fairways were monitored over a 4‐year period (2009–2012) to determine whether the lack of spatial associations between preferred hosts and immatures was a result of spatial scale or the density and distribution of conspecifics. Spatial Analysis by Distance IndicEs (SADIE) was used to characterize the spatial dispersion of populations of individual stages (larvae and pupae), P. annua, and turfgrass damage. Life stages were aggregated in each observation, independent of population density or the spatial dispersion of hosts. The distribution of consecutive and non‐consecutive immature stages was found to be correlated in all years, suggesting that females do not avoid patches already occupied by conspecific eggs. Surprisingly, significant spatial associations were not found between larvae and P. annua when the host plant was relatively abundant. Hence, multiple mechanisms may drive L. maculicollis oviposition site‐selection behavior, and a flexible strategy may allow the weevil to persist in areas where P. annua is not the dominant species. Future studies are required to determine what other factors (e.g., natural enemy‐free space, egg or time limitations) influence oviposition behavior.  相似文献   

7.
The population genetic structure of the American liver fluke, Fascioloides magna, and its definitive host the white-tailed deer, Odocoileus virginianus, was examined in South Carolina. Flukes were significantly more common in deer from river-swamp habitat than upland areas and prevalence increased with host age. The distribution of flukes among deer occurred as a negative binomial with the mean dispersion parameter, k, equal to 0.17 and the range from 0.10 to 1.11 within local areas. Significant spatial genetic differentiation was observed for flukes and deer. Patterns of genetic distance in flukes were not concordant with those of the definitive host nor were they related to geographic distance between sample locations. Spatial genetic differentiation among flukes reflected the tendency for individual hosts to harbor multiple individuals from a limited number of parasite clones. The large population size of the parasite and movements of the definitive host tend to counteract factors that lead to spatial differentiation.  相似文献   

8.
珍稀濒危植物桫椤种群结构与动态研究   总被引:41,自引:3,他引:41  
采用空间序列代替时间变化的方法,对7个地段中的桫椤种群大小结构进行分析,运用C、K、m*、m*/m5种聚集度指标测定不同地段内桫椤种群的空间分布格局及其动态,并根据植株个体点位图,考察桫椤种群在不同取样尺度上的空间分布格局.结果表明,不同地段中的桫椤种群结构存在增长型、稳定型、成熟型和衰退型4种类型;不同地段中的桫椤种群空间分布格局有所差异,表现为集群分布或随机分布;在桫椤种群生长过程中,分布格局从集群型向随机型转变;种群扩散型指数随取样尺度的增大而减小.  相似文献   

9.
Social interactions often play a significant role in determining patterns of spatial use. Although snakes are generally thought of as asocial, recent spatial dispersion studies suggest that the spatial ecology of snakes may be more strongly influenced by social interactions than previously thought. We investigated the spatial behavior patterns of a western cottonmouth (Agkistrodon piscivorus) population in east Texas by uniquely combining radio‐telemetry studies on free‐ranging snakes with experimental arena trials with captive individuals from the same population. Observations from the radio‐telemetry study on free‐ranging A. piscivorus indicated that females were more gregarious than males. In the follow‐up study, spatial dispersion data from captive snakes maintained in experimental field arenas yielded similar results to spatial behavior patterns of free‐ranging individuals. When compared to random experimental controls, these data suggest that observed spatial behavior patterns are related to mechanisms associated with both active avoidance among males and conspecific attraction among females. In addition to uniquely combining both free‐ranging and captive observations, this is the first snake study to demonstrate sex differences with both of these divergent (attraction and avoidance) spatial patterns within a single population. Thus, similar to other vertebrate groups, a growing body of literature suggests that social interactions in snakes should be strongly considered in interpretations of spatial ecology and behavior.  相似文献   

10.
Variation in spatial patterns of competing organisms is of fundamental importance for community and population processes. Yet the mechanisms controlling subjects like the degree of spatial aggregation in competing insect larvae across fragmented resources have rarely been addressed. In the present study, we tested for systematic differences in the spatial distribution patterns of Drosophila subobscura in natural fly communities, and found significant differences in two habitats that differ in the availability of breeding substrate types (decaying fruits). Assuming that the spatial egg-laying behaviour of drosophilids is under genetic control, and that different breeding substrates mediate different density-dependent larval fitness consequences, we tested whether adaptive genotypic variability is involved in the local variation of egg distribution patterns. We extracted isofemale lines from both habitats and analysed the spatial distribution of eggs achieved by single female flies under controlled laboratory conditions. This is a reasonable first test, because spatial patterns at the fly population level can be attributed to individual egg-laying behaviour. The degree of individual egg aggregation significantly depended on fly line identity, which indicates the existence of behavioural variants in natural populations. Based on habitat-dependent differences in the degree of spatial aggregation, we discuss to what extent our findings may reflect a behavioural adaptation to local breeding conditions.  相似文献   

11.
12.
1. In obligate symbioses with horizontal transmission, the population dynamics of the partner organisms are highly interdependent. Host population size limits symbiont number, and distribution of partners is restricted by the presence and thus dispersal abilities of their respective partner. The Crematogaster decameraMacaranga hypoleuca ant–plant symbiosis is obligate for both partners. Host survival depends on colonisation by its ant partner while foundress queens require hosts for colony establishment. 2. An experimental approach and population genetic analyses were combined to estimate dispersal distances of foundresses in their natural habitat in a Bornean primary rainforest. 3. Colonisation frequency was significantly negatively correlated with distance to potential reproductive colonies. Results were similar for seedlings at natural densities as well as for seedlings brought out in the area experimentally. Population genetic analysis revealed significant population differentiation with an FST of 0.041 among foundresses (n = 157) located at maximum 2280 m apart. In genetic spatial autocorrelation, genotypes of foundresses were significantly more similar than expected at random below 550 m and less similar above 620 m. Direct estimation of dispersal distances by pedigree analysis yielded an average dispersal distance of 468 m (maximum 1103 m). 4. For ants that disperse on the wing, genetic differentiation at such small spatial scales is unusual. The specific nesting requirements of the queens and the necessity for queens to find a host quickly could lead to colonisation of the first suitable seedling encountered, promoting short dispersal distances. Nonetheless, dispersal distances of C. decamera queens may vary with habitat or host spatial distribution.  相似文献   

13.
Species distribution models analyse how species use different types of habitats. Their spatial predictions are often used to prioritize areas for conservation. Individuals may, however, prefer settling in habitat types of low quality compared to other available habitats. This ecological trap phenomenon is usually studied in a small number of habitat patches and consequences at the landscape level are largely unknown. It is therefore often unclear whether the spatial pattern of habitat use is aligned with the behavioural decisions made by the individuals during habitat selection or reflects actual variation in the quality of different habitat types. As species distribution models analyse the pattern of occurrence in different habitats, there is a conservation interest in examining what their predictions mean in terms of habitat quality when ecological traps are operating. Previous work in Belgium showed that red-backed shrikes Lanius collurio are more attracted to newly available clear-cut habitat in plantation forests than to the traditionally used farmland habitat. We developed models with shrike distribution data and compared their predictions with spatial variation in shrike reproductive performance used as a proxy for habitat quality. Models accurately predicted shrike distribution and identified the preferred clear-cut patches as the most frequently used habitat, but reproductive performance was lower in clear-cut areas than in farmland. With human-induced rapid environmental changes, organisms may indeed be attracted to low-quality habitats and occupy them at high densities. Consequently, the predictions of statistical models based on occurrence records may not align with variation in significant population parameters for the maintenance of the species. When species expand their range to novel habitats, such models are useful to document the spatial distribution of the organisms, but data on population growth rates are worth collecting before using model predictions to guide the spatial prioritization of conservation actions.  相似文献   

14.
Taylor 's power law, s2=amb, provides a precise summary of the relationship between sample variance (s2) and sample mean (m) for many organisms. The coefficient b has been interpreted as an index of aggregation, with a characteristic value for a given species in a particular environment, and has been thought to be independent of the sample unit. Simulation studies were conducted that demonstrate that the value of b may vary with the size of the sample unit in quadrat sampling, and this relationship, in turn, depends on the underlying spatial distribution of the population. For example, simulated populations with hierarchical aggregation on a large scale produced values of b that increased with the size of the sample unit. In contrast, for a simulated population with randomly distributed clusters of individuals, the value of b eventually decreased with increasing quadrat size, as sample counts became more uniform. A single value ofTaylor 's b, determined with a particular sample unit, provides neither a fixed index of aggregation nor a complete picture of a species' spatial distribution. Rather, it describes a consistent relationship between sample variance and sample mean over a range of densities, on a spatial scale related to the size of the sample unit. This relationship may reflect, but not uniquely define, density-dependent population and behavioral processes governing the spatial distribution of the organism. Interpretation ofTaylor 'sb for a particular organism should be qualified by reference to the sample unit, and comparisons should not be made between cases in which different sample units were used. Whenever possible, a range of sample units should be used to provide information about the pattern of distribution of a population on various spatial scales.  相似文献   

15.
Summary In the present paper the authors are undertaking to show the correlation that exists, between the age, density of the trees and the coefficient of aggregation of a population of pines studied in the Lucs bogs-reservation of the Harghita Mountains (Rumania). The pines which have been studied are relics and a number of arctic elements (Sparganium minimum, Potamogeton alpinus, Betula nana) had survived with them. A geobotanical survey showed that the micro-distribution of the pine population presents, in spite of the uniformity of the ecological and phytosociological conditions, fluctuations of density as well as of aggregation which thus reflect the existence of some intense phytosociological processes in the apparently stationary structure of the trees. The coefficient of aggregation of the population under study has been determined by the Hopkins-method, based on some linear measurements carried out between the points determined at random (by chance) and the nearest vegetal individuals as well as between pairs of individuals chosen at random.The measurements have established that the structure of the trees which presented initially an aggregated dispersion, evolve together a natural elaquating towards the achievement of a normal dispersion. The calculation of the entropy of spatial distribution based on a determination of the probability of frequency of each of the calculated distances shows a significant growth of the entropy of spatial distribution of the constituent elements; this shows that the spatial structure of the population analysed evolves towards the stage of the highest probability, this being identical with the condition of statistical stability in which, however, the evolution of phytosociological processes continued.  相似文献   

16.
把握地区碳信息发展动态是开展区域碳平衡规划的科学基础。以统计年鉴数据为基础,对东山岛2012—2021年整体及各产业的直接碳排放量进行核算,同时,将产业与土地利用结合,分析其空间表现形态,运用核密度分析和克里金法分析碳排放源的空间影响,采用高斯烟羽模型对工业点源的碳排放扩散进行空间模拟,通过渔网和人口修正的方法分析海岛碳排放的空间分异,以此探讨海岛碳排放的空间分布和空间影响特征。结果显示,工业是东山岛的首要碳排放源,2021年工业碳排放量的大幅下降表明能源种类的转换对于工业碳减排具有重要作用;渔业碳排放量总体占比25%左右,是海岛地区不容忽视的碳排放源之一。在空间分布方面,东山岛综合碳排放的空间分布呈“点状聚集,面状扩散”的基本特征,工业碳排放对周围地区的影响最大,往往形成以工业碳排放源点为中心的碳排放热点核心区,其次碳排放量较高的地区为人口聚集区,丘陵区的碳排放量最低,不同土地利用类型之间形成碳排放的交叉过渡区。最后,本文从碳排放空间影响的视角出发,根据不同形态的碳排放源提出“包围”、“伴随”和“介入”的碳汇空间规划策略,这对区域的低碳规划具有一定参考意义。  相似文献   

17.
Seven spatial dispersions of organisms, reflecting some constraints of various physical and biological factors of the pelagic environment were simulated on computer. The relationships between the sampling methods (tow length, net size), the pelagic population dispersion patterns, and the sampling error were investigated by computer simulation. Two categories of dispersions were identified: 1) random or relatively uniform dispersions of organisms (including Poisson, gradient, and negative contagous dispersions), characterized by an index of dispersion s2m < 1.5; and 2) overdispersed distributions of swarming or clustering organisms (including positive contagion and centric aggregation dispersions), characterized by a value of s2m > 1.5.The origin and size of the sampling errors as deduced from the analysis of variance change, considerably from one group of dispersions to the other. In the first case, the net size was dominant, whereas in the second case the tow length and patch size effects are more critical. In general, the precision of estimations decreases as the over-dispersion of organisms increases. The confidence limits, for a simple estimation of abundance, vary considerably with the spatial dispersion, ranging from narrow values for the relatively uniform dispersions to very large values for the overdispersed distributions. There is an increasing imprecision in the estimate of population abundance as the dispersion coefficient s2m increases.Analysis of coefficients of variation indicates that more precise estimates of abundance may be obtained if a practical sampling procedure is applied to a group of specific organisms. Furthermore, it is suggested that a simulated approach, performed prior to ocean sampling, permits the establishment of the optimal sampling procedure for the species under study.  相似文献   

18.
以南京老山1 hm 2样地秤锤树(Sinojackia xylocarpa)天然种群为研究对象,运用成对g(r)函数,选择完全随机模型、异质泊松模型与先决条件零模型,分析秤锤树种群结构和空间分布格局及其空间关联性,从空间格局角度来深入认识其种群结构和分布格局及形成该格局可能存在的机制并提出保护建议。结果表明:(1)秤锤树天然种群中小径个体数量占优,属于增长型种群。(2)种内空间分布研究中,基于完全随机模型分析,秤锤树种群在尺度0~26 m时为聚集分布,尺度29~30 m时为均匀分布;基于异质泊松模型分析,秤锤树种群在0~23 m时为聚集分布,尺度27~30 m时为均匀分布。秤锤树空间分布表现为由聚集分布向均匀分布变化。(3)主要种间关联性研究中,秤锤树与朴树(Celtis sinensis)的种间关联性表现为小尺度下负关联,随着空间尺度的增加变为正关联。秤锤树与黄连木(Pistacia chinensis)和秤锤树与三角槭(Acer buergerianum)的种间关联性大致相同,基本为大尺度下正关联,偶尔出现负关联和无关联。上述结果表明,秤锤树种群更新状况良好,种群空间分布以聚集分布为主,其主要受种间竞争、扩散限制与密度制约的影响。基于种群现状开展就地保护与适当干扰其生存群落,是濒危物种秤锤树的科学有效的保护措施。  相似文献   

19.
It is common to characterize the spatial distribution of plant patterns as random, aggregate, or uniform. In this context, a major challenge for the researcher is the choice of the method to identify the spatial pattern correctly as well as the factors related to it. The vast literature on the subject is not recent, especially regarding the dispersion indices. The aim of this review was to conduct a critical and temporal analysis of these dispersion indices and test their effectiveness in determining the spatial distribution of Paepalanthus chiquitensis Herzog (Eriocaulaceae). This species is a meaningful model due to its occurrence in specific sites. The Lexis, Charlier, dispersion, relative variance, aggregation, Green, inverse of k of the negative binomial, Morisita, and standardized Morisita indices were limited to indicating that the individuals of the species are aggregate and did not provide information on neither spatial dimension (scale) where the aggregation occurs, nor the factors related to this aggregation. Although they have distinct magnitudes, the algebraic expressions of dispersion, relative variance, aggregation, Green, inverse of k, Morisita, and standardized Morisita indices exhibited a close relationship with each other and little progress from their precursors Lexis and Charlier. By disregarding the possibility of spatial dependence, these indices make it impossible to generate important hypotheses for the investigation of factors related to spatial structure. Therefore, they became obsolete and are falling into disuse. It should be noted that these measurements accomplished their role and contributed to science in times of limited technologies for spatial data.  相似文献   

20.
Most meiofaunal species are known to have a broad distribution with no apparent barriers to their dispersion. However, different morphological and/or molecular methods supported patterns of diversity and distribution that may be different among taxa while also conflicting within the same group. We accurately assessed the patterns of geographic distribution in actual genetic species of a marine meiofaunal animal model: Ototyphlonemertes. Specimens were collected from several sites around Europe, Northern and Central America, Southern America, Pacific Islands and Asia. We sequenced regions of two mitochondrial and two nuclear genes. Using single‐gene, a concatenated data set, multilocus approaches and different DNA taxonomy methods, we disentangled the actual diversity and the spatial structures of haplotypes and tested the possible correlation between genetic diversity and geographic distance. The results show (i) the importance of using several genes to uncover both diversity and highlight phylogeographic relationships among species and that (ii) independent genetic evolutionary entities have a narrower distribution than morphological species. Moreover, (iii) a Mantel test supported a positive correlation between genetic and geographical distance. By sampling from the two sides of Isthmus of Panama, we were additionally able to identify lineage divergence times that are concordant with vicariance mechanisms caused by the geological closure of the seaway across the Isthmus. We therefore propose that in addition to distance, other geological and ecological conditions are also barriers to the dispersion of and gene flow in marine meiofaunal organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号